NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY V¥

NGA.STND.0064_1.0 NEO
2017-09-15

NGA STANDARDIZATION DOCUMENT

National System for Geospatial Intelligence
Enterprise Ontology (NEO) Standard
(2017-09-15)

Edition 1.0

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

NATIONAL CENTER FOR GEOSPATIAL INTELLIGENCE STANDARDS

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table of Contents

1] 4 oo LU Yox (1o] o N PR UUUPPRPRRP %
T oT0] o LT PP PP P PP PPTRTP 6
A OCo T 0} (0] 811 T= 0 (o1 TP O P PP PPPPPTP PP 6
2.1 (O] 01 (o) a - Ta Lot == To [T =T 4 =] o] £ SRR 6
A A\ o 1S3 = Tox A =2 AU (PR PRTRP 7
R 11T 0= e [od =L TP PP PP PP PPPPPP PP 7
I R o 1 4 F= 111V T PP PTPRP 7
2 [01014 1 4= 11T T TP PT PP 7
4 Terms, Definitions, @anNd ACIONYIMS ...cooiiiiiiiiiiiie ettt e et e e e aibr e e e e anbee e e e aeee 8
4.1 Terms and DefiNtIONSuuiiiiiiiiiiie e e e e e e s et e e e e e e s e bbb e et e e e e e s antrraeeeaeeeeaann 8
4.2 F ol (0] 01, 0 1 PSP 12
4.3 PreSentation FONL ...t e e e e et e e e e e e e st b b e e et e e e e e sanbrrreeeaeeaeann 13
5 ONtOlOGY SPECITICALIONeiiiiiiiiie ittt e et e e e e 13
51 10T [T o) o USRS 13
5.2 N =T I a1 {0 g F= i o TN 1Y/ [To 1= PRSP 14
521 L] 10T [0 o 1T o PRSPPI 14
522 Diagram of the INformation MOEcoceiiiiiiiie e 15
523 (O 01 10] [0 o VPP PP P U PP PPPPPP PP 16
524 01111 = T PP PP PO P PP PPPPPPPPRPN 17
5.25 DiSJOINTCIASSES AXIOIM ...t eiitiiieiitiiee e ettt e ettt e e e et e e ettt e e s sseeeeessteeeeaasbeeeeanseeeesnseeeeaasteeeeannteeesasaeeeeanteeeennns 18
5.2.6 EntityProperty and itS SUDCIASSEScoiiuiiiiiiiiee ettt et e et e e et e e bt e e e nnaeeeeenes 18
5.2.7 (Do Tot0 14 a =T ol ez do] a1 = (0] o 1= 4 V2P SRPTTRRN 21
5.2.8 (D= 1= Y o 1= T TP UP T SPPPPPPPP 21
5.3 NEO Representation using Semantic Web Languagesccccccvvvveiiiiiiieeeeeeee 26
5.3.1 THe SEMANTIC WED ..ottt st e e ettt e e e st e e s bt e e e st e e e enseeeesnneeeean 26
5.3.2 Selecting OWL Constructs for Representation of NEO CONtENT...........coocviieiiiiiiiiiiiee e 28
533 Representing NEO Information Model Concepts iN OWL.......c.ueeiiiiiieiiiiieciiieeeeie e 28
534 Unique 1dentifiers iN OWL: TRISeiiiiiiieiieie sttt ettt e e e e e e s e e e e 29
535 NEO Structural EIEMENtS iN OWLuiiiiiiiiiiiiiiie ettt e e e e e et e e e e e e s stbaeeeeaeeessnnnseeeeaeeaan 29
5.3.6 NEO Documentation PropertieS iN OWWLuuiiiiiiiiiiiieiee ettt e e e sinne e ea e e 30
5.3.7 NEO DatatyPes iN OWVL ...ttt e e e et e e e e e st b e e e e e e s aabbrreeaeeeaan 30
5.4 N 1@ R OfoTp) (=1 al =1 g TeXo o [0o [PP 31
541 a0 [0 ex 1T] o HO TP TP TP PPPPPPP 31
5.4.2 Namespace and IAENTIIEIS......ccooi e e e e e e e e eaae e an 31
543 General NEO ENCOOING ..ottt ettt e e e e ettt e e e e e s bbb e e e e e e e e nnner e e e e e e e aannereeeas 33
544 General ENCOAiNG Of DALALYPESeiiiiiiiieiiiiiee ittt ettt ettt e st e et e s e e e anneee s 42
545 Technology-specific NEO ENCOUINGScooiiiiiiiiiiiieiiiee ettt 51
6 Governance and PubliCAtioncccociiiiiiiiiii i 56
6.1 [a1 ol [0 Tox i o] o IR T T PO OPPUPPPPRR 56
6.2 (GOVEITIANCE ...ttt ettt ettt ettt s skt 8 888t 8 88 s 8 e e ke e e s e e e e enn e 56
6.3 01 o] o= U1 T o SRS 56
6.3.1 a1 10T [0 o3 1T o USROS 56
6.3.2 Publication of NEO Content as a Technical Artifact ..o 56
6.3.3 Publication of NEO Content as REST API-accessible RESOUICES..........coocuuuiiiiiiiiiiiiiiiiieee e 57
Annex A — Conformance (NOFMEALIVE)eeiiiiiiiee ittt e e et e e et e e e sbb e e e e snbneeeeans
N0t R [o1 1o o T 1T o PSSR
A1l Terms and DefiNItIONSuuiiiiieii i e e e e e e e s s et reeeeesassstanereaeeesannsnrnnereeeeeannns
A.1.2 Conformance Testing Methodology
A.1.3 Logical Structure of the ADSIraCt TESE SUILEueiiiiieie e 65
A.2 Abstract Test Suite for the NSG Enterprise Ontology (NEQO)ccooiiiiiiiiiiiieiiiiiiiiieee e 67
A.2.1 Test Module for Conformance to ONtology SrUCTUIEc.uuiiiiiiieiiiiiiee e 67
A.2.1.1 Test Case for Ontology DependenCy(i€S)uueeiieeiiiiiiiiiiiiaee ettt e e e e reeee e e 67

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

A.2.1.2 Test Module for Components with [dentity (IRIS)cccuuiiiiiiiiiii e 67
A2121 Test Case for ONtology With TRIeiii e 67
A2.1.2.2 Test Case for Entity Classes With IRISuuiiiiiiiiiiiiiiec e 68
A.2.1.2.3 Test Case for Entity Properties With TRISccooiiiiiiiiiiic e 68
A2.1.2.4 Test Case for DisjointClasses WIth IRISceiieiiiiiiiiiiiie e 68
A.2.1.3 Test Module for Generalization (Subclass) Hierarchycccocccveviiei e 68
A.2.1.3.1 Test Case for TOP ENtitY ClaSSES.....ccuiuiiiiiiiiiiie et e e srtee e e s arr e e e e e s e s snraaneeeae s 69
A.2.1.3.2 Test Case for Generalization RelationShips..........coccviiiiiii e 69
A.2.1.4 Test Module for DISJOINTNESS AXIOIMScceiuurtieiiirieeiiiieee ittt e sttt esssbe e e e s asbae e e s annreeessnneeas 69
A2141 Test Module for Disjoint CollECtioN OF LiST.......c..uuiiiiiiieiiiiie it 69
A.2.1.4.1.1 Test Case for DisjointClasses COHECHIONcoiiiiiiiiiiiiiie e 70
A.2.1.4.1.2 Test Case for DiSJOINICIASSES LiST......cciiuuiiiiiiiiiieiiiiiie ittt 70
A.2.1.4.2 Test Case for Members of DiSJOINICIASSESuvieiiiiiieiiiiiee et 70
A.2.1.4.3 Test Case for SKOIEMIZEA RIScoiii e e e 70
A.2.1.5 Test Module fOr PrOPEILIEScc..uiiiiiieeis it e e e s s st e e e e s s s e e e e e e s s et e e e e e e s e snntnnneeeeeeeeannns 70
A.2.15.1 Test Case for Entity AttriDULES........ccoooe i 71
A.2.1.5.2 Test Case for Entity Relationships ..o, 71
A.2.1.5.3 Test Case for Property DOMaiN........ccoooi i 71
A2.15.4 Test Case for Property RanNQe......ccooooioiiiii e 71
A.2.15.5 Test Case for Property INVEISE ..o 72
A.2.2 Test Module for Documentation Of SEMANTICSeuiiiiiiiiiiiiiiiie e ee e 72
A.2.21 Test Module for Ontology DOCUMENTALIONcouueiiiiiiiiieiiieie et 72
A2211 Test Case for Ontology Version INfOrmMationccceeiiiiiieiiiiee e 72
A.2.2.1.2 Test Case for ONtolOgy LADEL........couuiiiiii e 72
A.2.2.1.3 Test Case for ONLOlOgY NAMEooiiiiiii e 73
A2.21.4 Test Case for Ontology AlIAS........ccoooe i 73
A.2.2.1.5 Test Case for Ontology Definition NOte..........ccoooeiiii i, 73
A.2.2.1.6 Test Case for Ontology Source Reference ..., 73
A2.2.1.7 Test Case for Ontology SoUrce Title ..o, 73
A.2.2.2 Test Module for Ontology Component DOCUMENLALIONuvvvveiuirimireninrninieinininreeenernrnn. 74
A2.22.1 Test Case for Abstract Ontology COMPONENtccoeieiiiiiiie e 74
A.2.22.2 Test Case for Ontology Component Label..........oooiiiiiiiiiiii e 74
A.2.2.2.3 Test Case for Ontology Component NAMEoooiiiiiieiiiiiie et 74
A2.224 Test Case for Ontology CompoNent AlIASc.uueieiiiiiieiiiie et 74
A.2.2.25 Test Case for Ontology Component Definition NOTeoooiiiiiiiiiie e 75
A.2.2.2.6 Test Case for Ontology Component Source RefErenceccccevvviieiiiiiie i 75
A.2.2.2.7 Test Case for ASSOCIAtION NAME........ccoi i e e e e s e e e e e s e snnreeeeeeees 75
A2.228 TeSt Case fOr CONSIIAINTc.ciiireiieiiieii et s e s e e anes 75
A.2.2.2.9 Test Case for Ontology Component Part-of ..., 76
A.2.3 Test Module for Datatype CONfOrMEANCE...........uuuuueiiieiiieieiiieieieieieieierarereeerere ... 76
A.2.3.1 Test Module for Primitive DatatyPeS.........uuuuuruuuurrieieieiereiereuninieisrnrersrnesrsesrnre———————————. 76
A23.1.1 Test Case for IRI DatatyPe.......ccoooeie e 76
A.2.3.1.2 Test Case for BoOIean DatatyPeccouuuiiiiiiiiiieiiiie ettt 76
A.2.3.1.3 Test Case for DateTime DatatyPeScoiuuuiiiiiiiiee ittt 77
A2.3.1.4 Test Case for CharacterString DatatyPecocuueieiiiieeiiiie et 77
A.2.3.1.5 Test Case for LocalizedCharacterString Datatype........coccvveveiiiieieiiiiie e 77
A.2.3.1.6 Test Case for LocalizedContinuousString Datatypec..eeeviuiereiiiiieniiiiee e 77
A.2.3.1.7 Test Case for IANALanguageSubtag Datatypec..eeeiiiiiieiiiiiie e 77
A.2.3.1.8 Test Case for Real DAtAtYPEeeiiii ittt e e e e eeeae s 78
A.2.3.1.9 Test Case for DeCimal DAtatYPecooiiuiiiiiiiaeai ettt e e e eaebeeee e e s 78
A.2.3.1.10 Test Case for INteger DAtAtYPEScccueeiiiiieiiiiieee ettt e e e e e eeeeae s 78
A.2.3.2 Test Module for MeasUure DAtAtYPESccoiiiuuriiiiieeiiiieie it e ettt e e e e s et re e e e e e e e snnbeeeeeeeeas 78
A.2.32.1 Test Case fOr MEASUIE VAIUE.........coiii ettt e e e e aeeeae s 78
A.2.3.2.2 Test Case fOr MEASUIE UNILuiiiiiiii ettt e e e e eeeae s 79
A.2.3.3 Test Module for ENUMErAtEd TYPES ...ooiiiiiiieiiiiiee ettt ettt ettt e e et e e e abeee e snbeeeean 79
A.2.3.3.1 Test Case fOr ENUMETALIONuuiiiiieeisiiiiiiieee e e s s st e e e e e e s s st e e e e e e s e snsanaereaeeesesnssnnneeeees 79

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

A.2.3.3.2 TeSt CasSe fOr COURIIST......coiiiiiiitii e e e e e et aeeeeeae s 79
A.2.3.3.3 Test Case for LIStEA VAIUEuiiiiieoe et e e e 79
A.2.3.4 Test Module for COmpleX DatatyPESccvviriiieeeiiiiiiiie et e e e s s st e e e e e s s st e e e e e e e s sennaaneeeaeeeannns 80
A2.34.1 Test Case for COMPIEX DAtAtYPEvveiiiiiiiie ittt e e e neee 80
A.2.3.4.2 Test Case for Datatype UNIONoouuiiiiiiiiie ettt e e e e nbee e e 80
A.2.3.4.3 Test Case fOr DAtatyPe MELAuuiiii ittt et e e e e neeeae s 80
ANnex B — ICS Pro FOrma (NOTMALIVE)eiiiiiiiiieiiiiee ettt sttt e e 81
[A [1 o To [§ o 1 o] o PP 81
B.2 ICS Pro FOrma fOr the NEO..........cuiiiiiiiie ittt et e st e e s se e e e s s e e e s nbaeeeennees 81
Annex C — NEOX Utility Ontology for NSG Enterprise Ontology (NOrmative).........ccocuveeeiiiveeennnnnnn. 84
L3 A [011 0T [T i [o] o [PPSO PRRRRR 84
O |] SRS 84
O B O o [o7=T o = PP P O PP TP PPPTPPPPRRPP 84
O 1 o] o= 1uTo] g 1o 1 A1 =) GO PRSP PRRRPR 84
Annex D — Inspecting NEO Content (INfOrMatiVe)oouueiioiiiiiii e 85
[200 R {1 Yo [o 1 o] o PP RRRP 85
D.2 NEO Content Inspection using the Protégé Ontology TOOIc..eveiiiiiiiiiiiie e 85
D.2.1 Protégé: An Open-Source Ontology Tool for Viewing W3C OWL ontologies........cccocvvveeriveeeennnne 85
D.2.2 Viewing NEO Content using Protégé and itS PlUG-iNS........c.ueiiiiiiiiiiiiiie e 85
Annex E — UML Primer (INTOrMaLIVE)uuuuuuiiiiieiiiiiiieieieieieieieieieieseesteseeetesessssesssssssssssessssssnssssrssesssnrnnnnnnes 96
[A U1 1 I N\ o] = 4o o £ PSR 96
E.2 UML Model RelatiONSNIPSoiiiiiiiiiiiiiii ettt sttt e e e e 96
2 A =TT o] - 1 o] 1 SRR 96
S N\ F= Vo =i o T o B O PO U PP PPPPPN 96
|2 B =T o 1T - 142 1o o SRR 97
E.2.4 Instantiation / DEPENUENCYuuuuuuuiiriiuiiiuruiuuuierereiererarerererareree et rarerarnrnrnrnrnrnrnrnnnnns 97
E.2.5 ROIES ...ttt e e e e e et e e e e e h e e et e e e e e e e bnbr e et e e e e e e e annrnees 97
LG T 11 1V o To [IS (=T =T 0] 5/ =S 98

Table of Figures

Figure 1 — Overview of the NEO INfOrmation MOE!...........couuuiiiiiiiiiiii e e e 15
Figure 2 — Model Of the NEO DAEALYPESeeiiiiiiiiiiiiiiie ettt ettt e e e et e et e e e e e e b bbb et e e e e e e e bbb et e e aeeeaanbnrreeeeeeaan 23
Figure 3 — The SemantiCc WED SEACK.........oooiiiiiiiie ettt e e e st e e e 27
Figure 4 — Range-based Alternative Encodings for ENtity AttHDULE.cuviiiiiiiiiiee e 38
Figure 5 — NEO Datatype Hierarchy (UPPEer-IEVEL)ooiiiiiiieie ettt 42
Figure 6 — OWL2 RDF/XML Encoding: Entity Class Aerodrome and its Disjoint SUDCIaSSEScccoccvveiiieeeiiiiieeenns 52
Figure 7 — OWL 2 RDF/XML Encoding: Subclasses of ABIOAIOMEcouiiiiiiiiiiiiiie e e e 53
Figure 8 — N-Triples Encoding: Entity Class LaNAAGIOUIOMEcoiiuiiiiiiiiieiiiiiiiet ettt e e e 55
Figure 9 — N-Triples Encoding: Disjoint Subclasses of AErOarOME.........ccoiiiiiiiiiiiiii e 55
Figure 10 — Resource Representation for NEO Enumeration ApronAccessibilityStatusTypeccvvveveeeeiiiiiiiiiieeeeeenn. 60
Figure 11 — Resource Representation for NEO Enumeration ApronAccessibilityStatusType ConceptScheme.......... 61
Figure 12 — Resource Representation for NEO Listed Value ApronAccessibilityStatusType /lockedcccocveennes 62
Figure 13 — Resource Representation for NEO Listed Value ApronAccessibilityStatusType /lockedOpen.................. 62
Figure 14 — Structure of the Abstract Test Suite for the NSG Enterprise ONtologycooovueeeiriiiieiniiiieniiiee s 66
Figure 15 — NEO Described on the Active Ontology Tab of the Protégeé TOOl...........ceoviiiiiiiiieiiiie e 86
Figure 16 — Protégé NEO Hierarchy View with Definition of the Class FeatureENntitycccceeveiveevieresiiiee e 88
Figure 17 — OntoGraf Plug-in View of NEO ActorEntity Hierarchy with Relationshipscccccoiiiiiiiiiiiniiiiiee 89
Figure 18 — Protégé Class View of NEO Building including its Subclasses, Annotations, and Property Cardinalities .90
Figure 19 — Protégé View of Object Properties for Building (with Building . featureFunction Selected)........................ 91
Figure 20 — NEO Complex Datatype BuildingFeatureFunctionCodeMeta............oocuveeiiiiiiiiiiieeiniiee e 93
Figure 21 — Protégé View of NEO Object Property BuildingFeatureFunctionCodeMeta . valuesccccceeeeniieennns 94
Figure 22 — Protégé Class View of the NEO Enumeration VoidValUEREASONcccocuireiiiieeeiiiieeeiie e sieeesiiee e 95
FIGUIE 23 — UML NOTALION ...ttt ettt ettt e ettt ookttt e e s h bt e e ettt e oo s b e e e e eb b et e e anbee e e anbeeeeanbneeennns 96
FIGUIE 24 — UML ROIES ...ttt e e e ekttt e e e h bt e e ettt e e e bb e e e e ekt bt e e anbe et e s nbeeeeanbneeeanes 97

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table of Tables

Table 1 — NOrmMative REFEIEICES. ettt e oottt e e e e e ettt e e e e e e s e tbaeeeeae e e e e nnsaeeaeeeesaannseneeeas
Table 2 — Informative References
Table 3 — Definitions Applicable to this Standard..............
Table 4 — Definition of Ontology and its Properties............
Table 5 — Definition of EntityClass and itS PrOPEITIES.ciiiiiiiiiiiiee et e e s a e e e e e saaraee s
Table 6 — Definition Of DiSJOINTCIASSESccuiiiiiie et e e e e e e e e s e e e e e e e s e a e e e e e e e s e aiabtrereeeeeeanansreeeas
Table 7 — Definition of EntityProperty and its Properties ...
Table 8 — Definition of EntityAttribute and itS PrOPEITIESc.vviiiiiiiie it
Table 9 — Definition of EntityRelationship and itS ProPerti©Seiiie oot e e
Table 10 — Encoding Elements for the Ontology
Table 11 — Encoding Elements fOr ENGILYCIASScooiiuiiiiiie ettt e et e e e e e et e e e e e e s e e e e e e e s e e nnraeeeas
Table 12 — Encoding Elements fOr DiSJOINTCIASSESuueieiiiiee it iiieee et s et et e e st e e s s e e e snbeeeesseeeesanneas
Table 13 — Encoding Elements for EntityAttribute (with PrimitiveDatatype Range)...........

Table 14 — Encoding Elements for EntityAttribute (with non-PrimitiveDatatype Range)....

Table 15 — Encoding Elements for EntityRelationship
Table 16 — Encoding Elements for PrimitiveDatatype
Table 17 — Encoding Elements for MeasureDatatype
Table 18 — Encoding Elements for ENUMErateaTYPEvviiiiiiie ettt e s
Table 19 — Encoding Elements for EnumeratedTyPeSChEME.........uiiiiiiiiie e
Table 20 — Encoding Elements for ListedValue Datatype
Table 21 — Encoding Elements for DatatyPeURNION.eiiiiiiii ettt e et e e e s s e e e antee e e snaeee s nnneas
Table 22 — Encoding Elements for DAtatyPEMELacuueieiiiiie ettt et e et e s sneee e e anteeeesnneee s enneas
Table 23 — Terms and Definitions for Conformance Testing
Table 24 — Concept(S) iN the NEOX ONEOIOQY. ... cciitriiiiiiiieiiiiee ettt s e e e et e e e snne e e s nanes

Introduction

The NSG Enterprise Ontology (NEO) Standard document (“NEO Standard”) defines the specification for a logical
theory that defines domain concepts used in Geospatial Intelligence (GEOINT) information shared in the U.S.
National System for Geospatial Intelligence (NSG). The ontology contains entity classes and properties, including
relationships. The ontology is formalized using the representation language defined in the World Wide Web
Consortium (W3C) Web Ontology Language, Second Edition (OWL 2). This NEO Standard specifies the ontology
information model, two encoding patterns, and a governance process.

The content of the NSG Enterprise Ontology (“NEO content”) is the OWL 2 ontology that specifies the entity classes
and properties to be used for the representation of GEOINT information. The NEO content is presented separately
from the NEO Standard in officially published technical artifacts. The technical artifacts are implemented in two of the
W3C encodings defined for the Semantic Web — Resource Description Framework (RDF) XML and N-Triples. The
NEO content is derived from the NSG Application Schema (NAS), which is the logical model for geospatial data in the
NSG enterprise.

The NEO enables the semantics (i.e., meaning) of GEOINT data published on the Web to be represented based on
well-known International Standards and W3C Recommendations.! In this way, the NEO supports collaborative efforts
across the U.S. National System for Geospatial Intelligence (NSG) to build a linked store of GEOINT data with
integrated, machine-processable semantics. The specific purpose of the NEO logical theory is to enable the
representation of GEOINT information (especially data instances) in a common semantic framework, which supports
improved management, search, retrieval, and utilization of those data resources. The NEO promotes data
interoperability between applications that require a rich description of intelligence information based on standards, in
order to enable data integration, categorization, indexing, search, query answering, constraint assertion, logical
inference, and/or Web services.

Both the NEO Standard and NEO content are developed and managed under the authority of the National
Geospatial-Intelligence Agency (NGA) as a Standards Development Organization (SDO). The NEO Standard and the
two NEO content encodings are published as registered technical artifacts in the online NSG-unique Standards
Register of the NSG Standards Registry.

Revision History

Description Date Edition

Initial Edition 09/15/2017 1.0

!Data on the Web Best Practices, a W3C Recommendation (31 January 2017). Latest version available online at:
http://www.w3.org/TR/dwbp/. Guidance on the production of data instances falls outside the scope of this standard.

http://www.w3.org/TR/dwbp/

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

1 Scope

The NSG Enterprise Ontology (NEO) Standard document (“NEO Standard”) defines the specification for a logical
theory that defines domain concepts used in Geospatial Intelligence (GEOINT) information shared in the U.S.
National System for Geospatial Intelligence (NSG).2 The ontology contains entity classes and properties, including
relationships. The ontology is formalized using the representation language defined in the World Wide Web
Consortium (W3C) Web Ontology Language, Second Edition (OWL 2). The NEO enables the semantics (i.e.,
meaning) of GEOINT data published on the Web to be represented based on well-known International Standards and
W3C Recommendations. This NEO Standard specifies the information model for the ontology, along with two
encoding patterns; these are presented in Section 5.

The content of the NSG Enterprise Ontology (“NEO content”) is the OWL 2 ontology that specifies the entity classes
and properties to be used for the representation of GEOINT information. The NEO content is presented separately
from the NEO Standard in officially published technical artifacts. The technical artifacts are implemented in two of the
W3C encodings defined for the Semantic Web — Resource Description Framework (RDF) XML and N-Triples.3

The NEO Standard supports collaborative efforts across the NSG to build a linked store of GEOINT data with
machine-processable semantics. This common semantic framework supports improved management, search,
retrieval, and utilization of GEOINT. The NEO content promotes data interoperability between applications that
enable data integration, categorization, indexing, search, query answering, constraint assertion, logical inference,
and/or Web services.

Guidance on the production of data instances falls outside the scope of this standard.

Both the NEO Standard and NEO content are developed and managed under the authority of the National
Geospatial-Intelligence Agency (NGA) as a Standards Development Organization (SDO). The NEO Standard and
NEO content evolve in response to NSG community requirements. The NEO Standard and the two NEO content
encodings are published as registered technical artifacts in the online NSG-unique Standards Register of the NSG
Standards Registry hosted by the National Geospatial-Intelligence Agency (NGA). The NSG Standards Registry is
the single authoritative source for the NEO Standard and for the technical artifacts encoding the NEO content in
RDF/XML and N-Triples format. The governance process is specified in Section 6.

The NGA is the authority for promulgating the NEO Standard and its accompanying technical artifacts encoding the
NEO content for use by the U.S. Department of Defense (DoD), U.S. Intelligence Community (IC), and U.S. civil
federal agencies.

2 Conformance

2.1 Conformance Requirements

Any product claiming conformance to the NEO (including the NEO Standard and associated NEO content) shall pass
all the requirements stated in the abstract test suite (ATS) in Annex A, which enumerates the specific elements of
conformance.

This standard defines a single class of conformance: Conformance Class A — Conformance for the Complete NEO.

Conformance may be claimed for data or software products, for services, and by specifications, including functional
standards. The kinds of products expected to make use of, and claim conformance to, the NEO Standard and
registered NEO content include:

e representations of GEOINT data specified using concepts in NEO content;

e search applications that use machine-processable semantics for indexing and querying (including query
expansion and extension);

e data integration services that leverage a reference ontology supporting inference and constraints; and

e automated reasoning tools that provide services such as classification, satisfiability, entailment, consistency
testing, conjunctive query answering, and retrieval of data instances.

Products that claim conformance to the NEO shall use official encodings of the NEO content in RDF/XML
(mandatory) and in N-Triples (optional).

2 This edition of the NEO Standard is available from the NSG Standards Registry, at: http://nsgreq.nga.mil/doc/view?i=2615.
8 RDF/XML is the mandatory encoding for OWL 2. N-Triples is an optional, plain-text format for encoding an RDF graph.

http://nsgreg.nga.mil/doc/view?i=2616

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

2.2 Abstract Test Suite
The abstract test suite (ATS) for the NEO Standard is specified in Annex A (normative).

3 References

3.1 Normative

The documents listed in Table 1 are indispensable to understanding and using this standard. For dated references,
only the cited edition or version applies. For undated references, the latest edition or version of the referenced
document (including any amendments) applies.

Table 1 — Normative References

NSG Ontology (NEO) content, encoded in technical artifacts:
http://nsgreg.nga.mil/neo

1ISO 19150-2:2015. Geographic information — Ontology — Part 2: Rules for developing ontologies

in the Web Ontology Language (OWL):
http://www.iso.org/standard/57466.html

IETF RFC 3987, Internationalized Resource Identifiers (IRIs):
http://www.ietf.org/rfc/rfc3987.ixt

IETF RFC 4646, BCP 47, Tags for Identifying Languages:
http://www.ietf.org/rfc/bcp/bepa 7.txt

W3C OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax

(Second Edition), 11 December 2012:
http://www.w3.0rg/TR/2012/REC-owl2-syntax-20121211/

W3C OWL 2 Web Ontology Language: Mapping to RDF Graphs (Second Edition), 11 December
2012:

http://www.w3.0rg/TR/2012/REC-owl2-mapping-to-rdf-20121211/

W3C RDF 1.1 Concepts and Abstract Syntax, 25 February 2014:
http://www.w3.0rg/TR/2014/REC-rdf11-concepts-20140225/

W3C RDF 1.1 N-Triples: A line-based syntax for an RDF graph, 25 February 2014:
http://www.w3.0rg/TR/n-triples/
W3C rdf:PlainLiteral: A Datatype for RDF Plain Literals (Second Edition) (11 December 2012):

http://www.w3.0rg/TR/2012/REC-rdf-plain-literal-20121211/

W3C SKOS Simple Knowledge Organization System (18 August 2009):
http://www.w3.0rg/TR/2009/REC-skos-reference-20090818/

W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes (5 April 2012):
http://www.w3.0rg/TR/xmlschemal1-2/

DCMI Metadata Terms (14 June 2012):
http://dublincore.org/documents/dcmi-terms/2

GEOINT Content Standards Board (GCSB) Operations Guide. NGA.SIG.0029_1.0_GCSB:
http://nsgreg.nga.mil/doc/view?i=4284

3.2 Informative

The informative (non-normative) documents listed in Table 2 are useful to understanding and using this standard. For
dated references, only the cited edition or version applies.

http://nsgreg.nga.mil/neo
http://www.iso.org/standard/57466.html
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/bcp/bcp47.txt
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/2012/REC-rdf-plain-literal-20121211/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/TR/xmlschema11-2/
http://dublincore.org/documents/dcmi-terms/2
http://nsgreg.nga.mil/doc/view?i=4284

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table 2 — Informative References

Standard or Specification ‘

ISO 19101-1:2014. Geographic information — Reference model — Part 1: Fundamentals (November
2014):
http://www.iso.org/standard/59164.html

1ISO 19103:2015. Geographic information — Conceptual schema language (December 2015):
http://www.iso.org/standard/56734.html

1ISO 19105:2000. Geographic information — Conformance and testing (December 2000):
http://www.iso.org/standard/26010.html

1ISO 19109:2015. Geographic information — Rules for application schema (December 2015):
http://www.iso.org/standard/59193.html

1ISO 19110:2016. Geographic information — Methodology for feature cataloguing (December 2016):
http://www.iso.org/standard/57303.html

ISO 19136:2007. Geographic information — Geography Markup Language (GML [version 3.2.1])
(September 2007):

http://www.iso.org/standard/32554.html
ISO 80000-1:2009 Quantities and units — Part 1: General:
http://www.iso.org/standard/30669.html

ISO/IEC 10646:2012, Information technology — Universal Coded Character Set (UCS):
http://www.iso.org/standard/56921.html

IETF RFC 1738, Uniform Resource Locators (URL):
http://www.ietf.org/rfc/rfc1738.txt

IETF RFC 3986, Uniform Resource Identifiers (URI): Generic Syntax:
http://www.ietf.org/rfc/rfc3986.txt

OGC Testbed-12 ShapeChange Engineering Report. OGC 16-020. November 2016.
http://docs.opengeospatial.org/per/16-020.pdf

OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.2:
http://www.omg.org/spec/UML/2.2/Infrastructure/PDFE/

OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.2:
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/

National System for Geospatial Intelligence Application Schema (NAS):
http://nsgreg.nga.mil/nas

Shorter Oxford English Dictionary, Sixth Edition (version 3.0.2.1). CD-ROM.

4 Terms, Definitions, and Acronyms

4.1 Terms and Definitions
The terms and definitions* specific to this standard are presented in Table 3.

Table 3 — Definitions Applicable to this Standard

Term Definition

annotation An expression used to associate information with an ontology or other resource.

NOTEL: An annotation is additional information associated to ontologies or ontology
components that is intended for human consumption and not for use by reasoning
software.

NOTE2: Each annotation consists of an annotation property and an annotation
value.

SOURCE: OWL 2 Structural Specification (Section 3.5; Section 10)

4 In the definitions in Table 3, a term is styled in bold when the meaning of that term is specified elsewhere in the table.

http://www.iso.org/standard/59164.html
http://www.iso.org/standard/56734.html
http://www.iso.org/standard/26010.html
http://www.iso.org/standard/59193.html
http://www.iso.org/standard/57303.html
http://www.iso.org/standard/32554.html
http://www.iso.org/standard/30669.html
http://www.iso.org/standard/56921.html
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc3986.txt
http://docs.opengeospatial.org/per/16-020.pdf
http://www.omg.org/spec/UML/2.2/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://nsgreg.nga.mil/nas

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Term Definition

annotation property | A model element used to provide a textual annotation for an ontology or ontology

component.
SOURCE: OWL 2 Structural Specification (Section 5.5)
annotation value A literal (including character strings), an IRI, or an anonymous individual that is the

value of an annotation property.
SOURCE: OWL 2 Structural Specification (Section 3.5)

axiom [OWL] A statement of something that is true in the universe of discourse (domain).

NOTE: Axioms in OWL 2 can be declarations, axioms about classes, axioms about
object or data properties, datatype definitions, keys, assertions (sometimes also
called facts), and axioms about annotations.

SOURCE: OWL 2 Structural Specification (Section 9)
blank node A node in an RDF graph that is distinct but has no IRI identifier.

NOTE: A blank node cannot be referred to outside of its local graph. When stronger
identification is needed, a blank node may be replaced and represented in the graph
with a new, globally unique IRI (a Skolemized IRI) corresponding to the blank node.

SOURCE: RDF 1.1 Concepts and Abstract Syntax (Sections 3.4, 3.5)
cardinality The number of distinct values specified for a particular property of an individual.

NOTE: Cardinality may be specified exactly (e.g., a person has exactly one biological
father), or by a minimum (e.g., a parent has at least one child) and/or a maximum (e.g.,
in the U.S., a person may legally have at most one spouse at a time) value.

SOURCE: OWL 2 Structural Specification (Section 8)
change notification | A publication in which modifications to selected items in a standard are reported in

(regarding a detail to the community of its users by the applicable maintenance authority.
standard) NOTE: In the NEO Standard, a change notification establishes a new content
baseline.
SOURCE: GCSB Operations Guide
class A set of individuals.

NOTE: In an ontology, a class typically represents a set of individuals each of which
meets specified criteria for membership in the class. Class-membership criteria may be
asserted formally in a class expression.

SOURCE: OWL 2 Structural Specification (Section 5.1; Section 8)
class expression A logic-based description composed from one or more classes and property

expressions that represents a set of individuals (i.e., a class) by formally specifying
the condition(s) on the properties of individuals belonging to the class.

NOTEL: Individuals that satisfy the specified conditions are said to be instances of the
class expression.

SOURCE: OWL Structural Specification (Section 8)

codelist A value domain including a code for each permissible value.
SOURCE: ISO 19136:2007 (Clause 4.1.7)
concept A mental representation of knowledge as an abstraction of the essential characteristics

of a type of entity, or relationship between entities, in a subject area or domain.

NOTE: Usually the abstraction is considered to be based on a generalization from
experience.

SOURCE: The Semantic Web. Michael C. Daconta, Leo J. Obrst, Kevin T. Smith. 2003.
conceptual model A model that defines concepts of a universe of discourse.
SOURCE: ISO 19101-1:2014 (Clause 4.1.5)

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Term Definition

content baseline The complete set of content of a standard, which is authorized (i.e., 'valid') for use at a
(of a standard) specified time.

NOTEL: A content baseline is established by publication of a technical artifact
containing the content that is valid at that time.

NOTEZ2: Content baselines may be established concurrent with the publication of a new
edition of a standard, or solely based on changes to the content of a standard.

SOURCE: GCSB Operations Guide (Section 2.3.5)

datatype An entity that refers to a set of data values.

(also: data type) NOTE: A datatype is a specification of a value domain.

EXAMPLES: Integer, Real, Decimal, Boolean, and String.

SOURCE: OWL 2 Structural Specification (Section 4; Section 5.2)

data value An element of a value domain.

NOTEL: A data value may be used to specify an evaluated property.

NOTE2: The set of elements of a value domain (i.e., a “value space”) is a datatype.
SOURCE: OWL 2 Structural Specification (Section 4)

edition A publication containing the entire current content of an established standard, and
(of a standard) issued by the authorized publication authority, either as the first edition of a new
standard or as a new edition (i.e., revised complete version, usually numbered; for
example, "2"9 edition") of a previously published standard.

SOURCE: GCSB Operations Guide

entity class A modeling class that represents a feature or other geospatially-referenced
information.
SOURCE: Based on entity, NAS — Part 1 (Section 1.1)

feature An abstraction of real-world phenomena.

NOTEZ1: ISO 19101, Geographic information — Reference Model, defines a feature as
an abstraction of real-world phenomena. Such abstractions may be represented in
information systems using a variety of spatial modeling methods, including
representations such as vectors, grids, and images.

SOURCE: ISO/TC211 19101:2014 (Clause 4.1.11)

NOTE2: The NSG Application Schema (NAS) — Part 1 also supports modeling entities
that may represent other geospatially-referenced information that does not correspond
to “real-world phenomena”.

generalization A taxonomic relationship between a more general element and a more specific element
[UML] of the same element type.

NOTE: An instance of a more specific element may be used where its more general
element is allowed.

SOURCE: ISO 19103:2015 (Clause 4.18)
individual A representation of an actual object from a domain.
SOURCE: OWL 2 Structural Specification (Section 5.6)

NOTE: Individuals that satisfy conditions specified in a class expression are said to be
instances of the class defined by that expression.

SOURCE: OWL 2 Structural Specification (Section 8)

inheritance [UML] The mechanism by which more specific classifiers incorporate structure and behavior
defined by more general classifiers.

SOURCE: ISO 19103:2015 (Clause 4.19)

instance An individual that satisfies the specified conditions represented by a class expression
and is therefore a member of the class represented by that expression.

SOURCE: OWL 2 Structural Specification (Section 8)

NOTE: Individuals represented in a data set may be called “data instances” due to
being categorized, or typed, into classes used to describe the data.

10

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Term Definition

Internationalized A sequence of characters from the Universal Character Set (Unicode/ISO 10646) [IETF

Resource Identifier | RFC 3987], intended for identifying an abstract or physical resource.

(IR) NOTEL: Every URlI is by definition an IRI. A mapping from IRIs to URIs is defined,
which means that IRIs can be used instead of URIs, where appropriate, to identify
resources.

SOURCE: IETF RFC 3987

NOTEZ2: A resource can be anything that has identity, e.g., an OWL class or an
instance of an OWL class.

NOTES3: OWL 2 extends OWL 1 by using IRIs to identify ontologies and their elements.
OWL 1 uses Uniform Resource Identifiers (URI).

SOURCE: OWL 2 Structural Specification (Section 2.4)

logical theory A set of sentences expressed in a formal language and consisting of axioms, inference
rules, and theorems, which are interpreted with respect to a specified domain.

NOTEL: A formal language is a language with identified primitive symbols and rules for
constructing strings from those symbols.

NOTE2: Axioms are sentences expressing the foundational truths of a theory; inference
rules enable the derivation of valid conclusions from true sentences used as premises;
and theorems are sentences that are true in the logical theory.

SOURCES: (a) The Semantic Web. Michael C. Daconta, Leo J. Obrst, and Kevin T.
Smith. Wiley Publishing, Inc. 2003. (b) Wikipedia: Theory (mathematical logic)
(http://en.wikipedia.org/wiki/Theory (mathematical logic)).

namespace In RDF, a common URI prefix or stem used in identifiers for a set of related resources.

NOTE1: The RDF namespace is concatenated with the local name to create the
complete URI identifier for an RDF resource.

NOTEZ2: Every RDF resource is identified by a URI.
SOURCE: ISO 19150-2:2015

NOTES3: The NEO Standard uses the standard prefix names for namespaces as
declared in the OWL Structural Specification (Section 2.4).

ontology A formal representation of phenomena of a universe of discourse with an underlying
vocabulary including definitions and axioms that make the intended meaning explicit
and describe phenomena and their interrelationships.

EXAMPLES: Basic Formal Ontology (BFO); Suggested Upper Merged Ontology
(SUMO); Friend of a Friend (FOAF).

NOTE: An ontology represents a universe of discourse (whether the world-at-large or
a specific domain) with a formalization based in logical theory, including formally
defined classes and properties, with restrictions and optionally rules, in which the
structural relationships (including subclass-of, equivalence, and disjoint-with) are
defined in a formal logic (either axiomatically or in a rule-based formulation).

SOURCE: ISO 19150-2 citing ISO 19101-1:2014, 4.1.26

property A characteristic of an entity.

NOTEL: The characteristic describes the entity, either by a qualitative or quantitative
value applicable to the entity itself, or by a relationship it has with another entity.

NOTEZ2: When used to describe an entity, a property has a specified value, either a
data value or another entity to which it is related in the indicated way.

SOURCE: Based on OWL 2 Structural Specification
property (datatype) | A property whose data value is a literal.

[OWL] NOTEL: Formally, a literal consists or a string (i.e., lexical form) and a datatype; the
string denotes a value in the range of the lexical space of the associated datatype.

NOTE2: Also see annotation property.
SOURCE: OWL 2 Structural Specification (5.4; (NOTE1) 5.7)

11

http://en.wikipedia.org/wiki/Theory_(mathematical_logic)

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Term Definition

property (object)
[OWL]

A property that is a relationship between two individuals.
SOURCE: OWL 2 Structural Specification and Functional-Style Syntax (5.3)

subclass

A relationship between two classes such that each instance of the more specific class
is also an instance of the more general class.

NOTEL: In OWL, an axiom expressed with “SubClassOf” states that each instance of
one class is also an instance of another, more general class.

NOTE2: Subclass axioms may be used to construct a hierarchy of classes.
SOURCE: OWL Structural Specification (Section 9.1)

URI Base

A base URI in a domain owned by the organization that maintains the model or
ontology.

SOURCE: ISO 19150-2:2015 (Clause 6.2.2)

Uniform Resource
Identifier (URI)

A compact string of characters for identifying an abstract or physical resource.

NOTEZ1: A resource can be anything that has identity; for example, an OWL class, or
an individual that is an instance of an OWL class.

NOTE2: A URI identifies a resource either by location, or by name, or both.
NOTES: URIs are limited to a subset of the ASCII character set.
SOURCE: IETF RFC 3986

Uniform Resource
Locator (URL)

A compact string representation for location and access of a resource available on the
internet.

NOTE: A URL is a type of URI.
SOURCE: IETF RFC1738

universe of
discourse

A view of the real or hypothetical world that includes everything of interest.
SOURCE: ISO 19150-2:2015 citing ISO 19101-1:2014 (Clause 4.1.38)

4.2 Acronyms

The acronyms that are used in this standard are specified in the following list.

ASCII
ATS
API
BCP
DCMI
DoD
GCSB
GEOINT
GFM
IANA
IC
IEC
IETF
IRI
ISO
IUT
NAS
NGA
NSG
NEO
OGC
OMG
OwWL
RDF
RDFS
REST

American Standard Code for Information Interchange
Abstract Test Suite

Application Programming Interface

Best Current Practice

Dublin Core Metadata Initiative

(U.S.) Department of Defense

GEOINT Content Standards Board
Geospatial Intelligence

General Feature Model

Internet Assigned Numbers Authority
(U.S.) Intelligence Community

International Electrotechnical Commission
Internet Engineering Task Force
Internationalized Resource Identifier
International Organization for Standardization
Implementation Under Test

NSG Application Schema

National Geospatial-Intelligence Agency
National System for Geospatial Intelligence
NSG Enterprise Ontology

Open Geospatial Consortium

Object Management Group

Web Ontology Language

Resource Description Framework

RDF Schema

REpresentational State Transfer

12

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

SDO Standards Development Organization
SKOS Simple Knowledge Organization System
UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML Extensible Markup Language

4.3 Presentation Font

The general text of this document is presented using Arial font. Encoding elements for the information model are
presented using Courier New font (e.g., owl:Class).

5 Ontology Specification

5.1 Introduction

The NEO Standard establishes the terminological, semantic, and structural basis for specifying a conceptual model in
the form of a logical theory that defines domain concepts used in Geospatial Intelligence (GEOINT) information
shared in the NSG. This section on ontology specification defines the information model for representing the NEO
content and specifies two encodings for that content.

The NEO information model is based on the General Feature Model (GFM) of ISO 19109:2015. The formal
representation for concepts in the NEO information model is based on the family of W3C Recommendations (i.e.,
standards) defining OWL 2. The representation of the NEO model using OWL 2 classes and properties supports the
use of NEO content to describe data exchanged among automated information systems in a machine-processable
way.®

To support usage on the Web, the NEO Standard prescribes Internationalized Resource Identifiers (IRIs) to identify
the NEO content. To support applications that require a Web encoding format, the NEO Standard specifies two W3C
encodings: RDF/XML and N-Triples. The encoded NEO content is published in the NSG-unique Standards Register
of the NSG Standards Registry and is also accessible through the REST APl component of the NSG Standards
Registry.

The ontology specification in the NEO Standard defines the NEO content in three ways, by providing:

1. Content specification — the information model for NEO entity classes (types), their properties (attributes and
relationships), and datatypes;

2. Content identification — IRIs for unique identification of items in the NEO content; and
3. Content encoding — Specifications for the RDF/XML and N-Triples encodings of the NEO content.

Section 5.2 specifies the information model for the NEO in a diagram together with tabular specifications for all
included modeling elements.

Section 5.3 specifies the use of OWL 2 to represent elements of the information model.

Section 5.4 specifies the implementation of the NEO content in two supported encodings: (1) RDF/XML and (2) N-
Triples. This allows instance data in either RDF/XML or N-Triples formats to be related to NEO concepts in order to
provide semantics for data exchanged among automated information systems.

5 Data on the Web Best Practices, a W3C Recommendation (31 January 2017). Available online at: http://www.w3.org/TR/dwbp/.

13

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

NOTE The NEO Standard document does not include the specific ontology content (i.e., specific
entity classes) included in any particular NEO content baseline. NEO content is published
in technical artifacts (encodings) that may be accessed online in the NSG-unique
Standards Register of the NSG Standards Registry. NEO content is also accessible
through the REST API component of the NSG Standards Registry. See Section 6.3.

5.2 NEO Information Model

5.2.1 Introduction

The information model for NEO defines the modeling concepts needed to represent a logical theory of entity types
and properties (including relationships) used for the description of geospatial information in the NSG.

The NEO information model is based on the General Feature Model (GFM) defined in ISO 19109 for use in ISO
geographic-information standards. The GFM provides “a model of the concepts required to classify a view of the real
world” in which the universe of discourse is described using feature types with properties including attributes and
associations. (1ISO 19109, 7.4.2) The GFM is a metamodel for defining features, and thus provides a framework for
the definition of domain concepts used in the description of GEOINT data. The NEO information model additionally
specifies documentation properties to record the semantics and provenance of NEO content.

The NEO information model includes the following kinds of information-modeling constructs:
e ontology class (for representing and documenting the NEO content),
e entity class (for representing object types and data types included in the NEO content),
e class axiom for representing the disjointness constraint on collections of sibling subclasses,
e entity property (for representing the characteristics of entities, including relationships), and
e aset of documentation properties (for information about the ontology and its components).

Section 5.2.2 presents a diagram of the information model (Figure 1) and explains the structure of the tabular
specifications for NEO modeling concepts (Sections 5.2.3. through 5.2.7).%

Section 5.2.8 specifies the datatypes used in the NEO information model (Figure 2).

6 See Annex E for explanation of the notation.

14

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

5.2.2 Diagram of the Information Model

0:% ; /dependency

Ontology DocumentationProperty
0.* 0.* o {Abstract} <
DisjointClasses - < ontologylRI : IRI -
versionlR1: R propertylRi: IRi
o ‘<> | label | | name | alias |deﬁniﬁonNote| associationName
i 0.* 0.*
constraint I sourcelRl || sourceTitle versioninfo |
0.* 0.*
2.* EntityClass <}°--’
disjointMember classiRl - IRI generalization
hasRangeEntityClass R
O"t
characterizedEntity Y 0..* ZF
0.* KE‘V

EntityProperty {Abstract} <3]

s []
e []
o [}—{]

oo [}]
EntityAttribute

: 5 S DataType
EntityRelationship o o o Dependency [0 |leeee--
rangeValueType : DataType |- —' {Abstract} |:|- >‘:]

propertyliRI: IRl

inverseOf | 0.1

Figure 1 — Overview of the NEO Information Model

15

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Each modeling concept in the NEO information model is defined, together with its properties, in tables in the following
sections. The table format used to document these model components is as follows:

523

The Reference column consists of a sequentially-assigned, non-normative identifier of the element (class or
property) that is provided for cross-referencing purposes. It may vary from edition-to-edition of this
document.

The NEO Modeling Concept column specifies the class name or property name for the information
modeling concept. Properties are either attributes or relationships. Relationship names are prefixed by the
italicized phrase “Role name”.

o A specified class in the model has a name and always appears in the table on a light-grey highlighted
row above its properties.

o The properties (attributes and/or relationships) of a model class are specified in subsequent rows of the
table below the class row.

The Definition column specifies the definition of the model class or property.

The Source of Definition column records the source of the definition of the information modeling concept if
it is based on a definition in an external source. If blank, the source of the definition is this standard.

The Obligation column specifies if the property is Mandatory, Conditional, or Optional. This column has
values only for properties and is dark-grey filled on rows containing classes.

o Properties whose obligation is “Mandatory” shall be populated in accordance with the property
definition and any associated guidance.

o Properties whose obligation is “Conditional” are mandatory when the stated condition is satisfied, in
which case they shall be populated in accordance with the property definition and any associated
guidance.

o Properties whose obligation is “Optional” are optional, but their population is good business practice
when the applicable information is available.

The Multiplicity column indicates the number of instances of the value type of the property that are
permitted by this information model. In the case that more than a single domain value of the property is
allowed, an indication may also be included in this column if the ordering of the domain values is significant.
This column has values only for properties and is dark-grey filled on rows containing classes.

The Value Type column indicates the modeling concept or datatype that is used to define the value(s) of the
property. This column has values only for properties and is dark-grey filled on rows containing classes.

Ontology

The Ontology model component represents a logical theory as a resource containing component classes, properties,
and axioms. The ontology is assigned a unique identifier in the form of an IRI. An ontology may be formally related to
one or more other ontologies whose content is imported. The specification of Ontology and its properties is presented
in Table 4. In encodings, an Ontology shall also be described using the applicable documentation properties,
including its name and source information (see Section 5.2.7).

16

Table 4 — Definition of Ontology and its Properties

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Ref # NEO Modeling Definition Source of Definition Obligation Multiplicity Value Type
Concept

1 Ontology A formal representation of phenomena of a universe of 1SO 19101-1:2014, 4.1.26
discourse with an underlying vocabulary including
definitions and axioms that make the intended meaning
explicit and describe phenomena and their
interrelationships.

2 ontologylRI A uniform resource identifier (URI) that uniquely identifies 1ISO 19150-2:2015, 6.2.2 Mandatory Exactly one IRI
an ontology, consisting of a URI base owned by the
organization that maintains the ontology, concatenated
(following a separator "/") with an abbreviation of the name
of the ontology.

3 versionIRI A uniform resource identifier (URI) that uniquely identifies a 1ISO 19150-2:2015, 6.3.3 Mandatory Exactly one IRI
specific version of an ontology, consisting of a URI base
owned by the organization that maintains the ontology,
concatenated (following a separator "/") with an abbreviation
of the name of the ontology and (following a separator "/")
with the version indicator (e.g., year or version number).

4 Role name: An ontology whose content is imported into this ontology. ISO 19150-2:2015, 6.3.3 Optional Zero or more Ontology

dependency
5.2.4 EntityClass

The EntityClass model component is used to define the entity types in the ontology. An entity type is a set of individuals that share the same nature and typical
characteristics. The specification of EntityClass with its properties is presented in Table 5. Each EntityClass in the NEO content is assigned a unique identifier in
the form of an IRI. Each EntityClass may be defined with specific properties (i.e., attributes and relationships) that characterize individuals of that type. In
encodings, each EntityClass will also be described using the applicable documentation properties, including its name, source reference, and applicable constraints
(see Section 5.2.7).

17

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table 5 — Definition of EntityClass and its Properties

Ref NEO Modeling - - N S
Concept Definition Source of Definition Obligation Multiplicity Value Type
1 EntityClass A concept for a set of individuals that share the same nature Based on UML 2.4
and specific properties.
2 classIRI A uniform resource identifier (URI) that uniquely identifies a 1ISO 19150-2:2015, 6.2.4 Mandatory Exactly one IRI
class, consisting of the ontology IRI concatenated (following
a separator) with the label of the class.
3 isAbstract A Boolean value indicating that this entity class is abstract 1ISO 19109:2015, 7.4.5 Conditional If applicable, then | Boolean
(i.e., not intended to be used directly in classification of data isAbstract exactly one.
instances).
4 Role name: The relationship between an entity class and its 1ISO 19109:2015, 7.4.5 Conditional If applicable, then | EntityClass
generalization superclass(es), such that all individuals belonging to the superType; 7.4.12 one or more.
subclass also belong to the superclass and satisfy its generalization
definition. A subclass inherits the properties of its
superclass(es). The superclass is the generalized class,
while the subclasses are typically specified with additional
properties.
Section 5.2.6 describes a special use of the EntityClass model component to define a relationship that has attributes.
5.2.5 DisjointClasses Axiom
The DisjointClasses model component represents sets of entity classes which shall not have any individuals as members in common.
Table 6 — Definition of DisjointClasses
Ref # NEO Modeling Definition Source of Definition Obligation Multiplicity Value Type
Concept
1 DisjointClasses A collection of entity classes, all of which are pairwise ISO 19109:2015, 7.4.12
disjoint, indicating that no individual can belong at the uniguelnstance
same time to more than one of the member classes
("types"). For example, a collection of sibling
subclasses having the same generalization, where
instances of the supertype shall not be an instance of
more than one of the subtypes.
2 Role name: An entity class belonging to this collection of disjoint Conditional If applicable, then EntityClass
disjointMember classes. two or more.
5.2.6 EntityProperty and its Subclasses

The EntityProperty model component is an abstract generalization for the representation of attributes and relationships that characterize the instances of an
EntityClass. Each property is assigned a unique identifier in the form of an IRI. The specification of EntityProperty and its properties is presented in Table 7.

18

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

EntityProperty has two concrete subclasses, which are specialized for the representation of attributes (data-valued characteristics of an entity) and relationships
(associations between individuals). The subclasses of EntityProperty are presented in Table 8 and Table 9. Every EntityAttribute and EntityRelationship will have
attribution inherited from this abstract superclass, in addition to the properties defined for the specialization. Each EntityAttribute and EntityRelationship will also be
described using the applicable documentation properties, including its name and source reference (see Section 5.2.7).

Table 7 — Definition of EntityProperty and its Properties

Ref # NEg Modeling Definition Source of Definition Obligation Multiplicity Value Type
oncept
1 EntityProperty A concept for a characteristic of an entity (either an attribute | Based on UML 2.4
{Abstract} of the entity or a relationship to another entity).
2 propertylRI A uniform resource identifier (URI) that uniquely identifies a ISO 19150-2:2015, 6.2.6 Mandatory Exactly one IRI
property, consisting of the ontology IRI concatenated (Table 7)
(following a separator) with the label of the property.
3 Role name: The relationship between an entity property and an entity Optional Zero or more EntityClass
characterizedEntity | class whose individual members may be described using
this property.

19

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

The EntityAttribute model component represents a characteristic that describes an entity in terms of a data value. The data type may be simple or complex. In
addition to the properties listed below, EntityAttribute also inherits the properties of EntityProperty specified in Table 7.

Table 8 — Definition of EntityAttribute and its Properties

Ref # NEO Modeling Definition Source of Definition Obligation Multiplicity Value Type
Concept
1 EntityAttribute A concept that represents a characteristic that describes an
entity in terms of a data value, data without reference to
another entity.
2 rangeValueType The datatype for all values of this entity attribute. Mandatory Exactly one DataType (see
Section 5.2.8)

The EntityRelationship model component represents a characteristic that describes an entity in terms of its association with another entity. An EntityRelationship
may have an inverse; that is, it may be paired with another EntityRelationship specifying a relationship in the reverse direction from the original value-type (range)
entity to the original domain. The meanings of an EntityRelationship and its inverse are related but not necessarily the same; each direction may have a distinct
meaning. An EntityRelationship may be derived from a named association between two entity classes; in that case, the name of the association is recorded on the
EntityRelationship using a documentation property (associationName; see Section 5.2.7). In addition to the properties listed below, EntityRelationship also inherits
the properties of EntityProperty specified in Table 7.

Table 9 — Definition of EntityRelationship and its Properties

Ref NEO Modeling . . N s
Concept Definition Source of Definition Obligation Multiplicity Value Type
1 EntityRelationship A concept that represents a relationship between two
individuals.
2 Role name: The entity class that is the value type (i.e., range) for Optional Zero or more EntityClass
hasRangeEntityClass this entity relationship.
3 Role name: An entity relationship that relates the same two entities Conditional If applicable, EntityRelations
inverseOf as this relationship but with the opposite directionality then exactly hip
(i.e., interchanging the domain and range). one.

The EntityRelationship model component is not used to represent a relationship which itself has properties (corresponding to the UML construct for an association
class). The NEO information model does not include a specialized modeling element for that concept. Instead, NEO models relationships-with-properties by using
an EntityClass to represent the relationship and using two roles (hasRangeEntityClass) to relate the EntityClass to each of the two individuals associated by the
relationship-with-properties. Those individuals, in turn, have inverse hasRangeEntityClass roles that relate them to the EntityClass representing the relationship
between them.”

" See the informative reference (Section 3.2) OGC Testbed-12 ShapeChange Engineering Report (section 8.2.5) for an explanation (with diagrams) of the pattern of entity classes and
relationships that is used in the NEO content to represent content derived from UML association classes. The approach is based on GML 3.3 (see
https://portal.opengeospatial.org/files/?artifact id=46568), Section 12.3.

20

https://portal.opengeospatial.org/files/?artifact_id=46568

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

5.2.7 DocumentationProperty

The model component DocumentationProperty is the set of properties that represent labels, provenance information,
and other annotations used to describe the ontology and ontology components, where applicable. The documentation
properties are defined as follows, including the model components to which they apply:

e label — A compressed human-readable designator for a resource that may be used as the terminal segment
of its resource IRI. The language may be indicated. [Source: Based on ISO 19135:2005, 7.2 Iltem identifiers;
1ISO 19150-2:2015, 6.3.3 and 6.4.3]

o Alabel is mandatory on the ontology and all ontology components.

e name — The preferred human-readable designator that is used to denote the concept in a specified
language. [Source: ISO 19135:2005, 7.2 Item names, 8.6.2 name]

o A name is mandatory on the ontology and all ontology components.

e alias — A functionally equivalent synonym for a concept in an alternative context or language. [Source: ISO
19110:2016, Table B.2, No. 2.5 aliases]

o Any concept may have zero or more aliases.

o definitionNote — A precise statement of the nature and specific properties of a concept, followed by an
optional statement about relevant non-essential qualities, variations, scope, and/or examples. The language
of the definition may be indicated. [Source: ISO 19135:2005, 7.3 Definitions; 1ISO 19150-2:2015, 6.4.3]

o A definitionNote is mandatory on the ontology and all ontology components.

e associationName — The name of the (UML) association from which an entity relationship representing an
association role was derived. [Source: ISO 19150-2:2015, 6.10.2.3 Rules]

o Each entity relationship derived from an association role of a named association is annotated with
the association name.

e constraint — A description of a condition or restriction used for declaring some of the semantics of an entity
class. [Source: ISO 19150-2:2015, 6.11 Constraint]

o A constraint may be used only on an entity class.

e sourcelRI - The Internationalized Resource Identifier (IRI) of the recommended reference to be used for
information about the concept. [Source: ISO 19115:2003, 2.4.2.3 (line 96), sourceCitation]

o A sourcelRI is mandatory on the ontology and all ontology components.

e sourceTitle — The title of the ontology reference document or standard on which the ontology is based.
[Source: ISO 19150-2:2015, 6.3.3]

o A sourceTitle is mandatory on the ontology (and excluded on ontology components).

e versionInfo — A character string indicating a unique state in the life of a managed resource (for example: by
date or number). [Source: Based on ISO 19135:2005]

o A versioninfo annotation is mandatory on the ontology (and excluded on ontology components).
5.2.8 DataType

5.2.8.1 Introduction

The NEO information model specifies datatypes for use in defining the ranges of properties included in the ontology.
NEO datatypes are classes that define allowed types of data values. Distinctions among NEO datatypes are based
primarily on structural characteristics. Some datatypes (for example, those classified under MeasureDatatype) also
have a common semantics.

The NEO information model includes the following top-level classes of datatypes:

e Primitive Datatypes, which consist of a simple data value that is not decomposable into other datatypes
(Sections 5.2.8.2 through 5.2.8.12);

e Measure Datatypes, which specify a numeric value accompanied by a unit of measure (Sections 5.2.8.13
and 5.2.8.14);

21

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

e Enumerated Types, which specify a set of data values that may be used as the value of a property (Sections
5.2.8.15,5.2.8.16, and 5.2.8.17);

e Complex Datatypes, which specify compositions consisting of multiple properties, including some that
represent metadata about an evaluated property (Sections 5.2.8.18, 5.2.8.19, and 5.2.8.20).

The NEO information model datatype hierarchy also includes the abstract class DataComponent, one of a set of NAS
concepts for dynamically specifying externally-defined properties and their value types.

Figure 2 presents a diagram of the datatypes included in the NEO information model.2 Each non-abstract datatype is
described in the sections following the diagram.

8 The NEO content includes numerous additional datatypes that are specializations of the datatypes in the NEO information model
presented here (e.g., Binary (a Primitive Datatype); Real Interval and Currency Value (Complex Datatypes); and the many types of
DatatypeUnion and DatatypeMeta, such as MaritimeBottomCharactermaterialCodeReason and AerialTypeCodeMeta.

22

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

- 0.* 0.*
DocumentationProperty
-
{Ab: 3 DataType {Abstract}
Complex datstypes!
havetwo or more
entity properties.
[
!
I
DataComponent Primitive Datatype MeasureDatatype _ - o b
{Abstract} {Abstract} {Abstract} T ype {Abstract} Comp type
[| |
. Boolean Mty Codelist E 6 DatatypeUni DatatypeMeta
CharacterString {Abstract} | measureValue TREueR b Hypetmon type
A measureUnit
4 IRI i =l Real UnitOf
LocalizedCharacterString Measure
language : IANALangusgeSubtag [0..1] DateTime [~ | Decimal IANALa nguageSubtag
Q Key
LocalizedConti sString —— Integer
s [——]
Z} EnumeratedTypeScheme
i
et — o []
NonNegativelnteger & valuesComplete : Boolean

— comme [}]
s i el B .
Member |©° 2..*| hasMember

Usidiraziond
ListedValue amcen [F—{]

| broaderValue | 0.1

Figure 2 — Model of the NEO Datatypes

23

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

5.2.8.2 CharacterString

The datatype CharacterString represents a finite-length sequence of zero or more characters from the Universal
Character Set (Unicode), as specified by ISO/IEC 10646. The character string may be accompanied by a formal
identifier (i.e., a token or “tag”) used to identify the natural language of the expression represented by the string. A
character string may be further specified, including with respect to length (exact, minimum, or maximum) or pattern
(for example, a pattern that excludes space characters). The string value itself is simple; that is, it cannot be
decomposed further into other datatypes.

5.2.8.3 LocalizedCharacterString

The datatype LocalizedCharacterString represents a character string for which the natural language to use in
interpreting the content is specified by a language code (“tag”). A character string is a finite-length sequence of zero
or more characters from the Universal Character Set (Unicode). A language tag is a lowercase abbreviation for the
natural language of the expression represented by a character string.

An attribute of LocalizedCharacterString uses the codelist IANALanguageSubtag to indicate the language of a
character string. The IANALanguageSubtag codelist represents a set of formal identifiers for natural languages, as
defined by BCP 47 (currently represented by RFC 4646 and RFC 4647) or its successor(s). IANA language subtags
are the lowercase two-character codes contained in the Language Subtag registry administered by the Internet
Assigned Numbers Authority (IANA) in accordance with the Internet Engineering Task Force (IETF) Recommendation
for Comment (RFC) 5646.

The language codes in the IANA Language Subtag registry are based on the International Organization for
Standardization (1ISO) 639 series of standards.®

5.2.8.4 LocalizedContinuousString

The datatype LocalizedContinuousString represents a character string having no whitespace characters (unless they
are encoded by '%20") and for which the natural language to use in interpreting the content is specified by a language
code (“tag”).

5.2.8.5 Boolean

The datatype Boolean represents the values of a two-valued logic. A Boolean value is either TRUE or FALSE.

5.2.8.6 IRI

The datatype IRI represents International Resource Identifiers (IRIs). An IRl is a finite-length sequence of characters
from the Universal Character Set (Unicode/ISO 10646) that is intended to identify an abstract or physical resource as
described in IETF RFC 3987.

5.2.8.7 DateTime

The datatype DateTime represents the set of specialized character strings consisting of digits with leading zeroes that
contain values for century (CC), year (YY), month (MM), day (DD), and hours (hh), minutes (mm), and seconds (ss),
with a timezone offset from Coordinated Universal Time (UTC) or 'Z' for UTC, formatted in accordance with IETF RFC
3339, which is 'CCYY-MM-DDThh:mm:ssZ' (for example: '1985-04-12T11:45:20Z" for 11 hours, 45 minutes and 20
seconds UTC on 12 April 1985). The format conforms to xsd: dateTime°. Midnight is understood to be 00:00:00
(the beginning of a day); when the time is not specified then midnight in the local time zone is typically implied.

5.2.8.8 Number

The datatype Number is the generalization of specific primitive datatypes (for example: Real and Integer). The
Number datatypes represent quantitative values that can be used to specify the numeric amount of a
MeasureDatatype.

9 The complete IANA Language Subtag registry content is available at the following URL.:
http://www.iana.org/assignments/language-subtag-registry/language-subtag-reqgistry.
10 See http://www.w3.0rg/TR/xmlschema-2/#dateTime.

24

http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://www.w3.org/TR/xmlschema-2/#dateTime

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

5.2.8.9 Real

The datatype Real represents a signed real (floating point) number consisting of a mantissa and an exponent, which
represents a value to a precision given by the number of digits shown, but is not necessarily the exact value.
5.2.8.10 Decimal

The datatype Decimal represents a number from the subset of real numbers that can be obtained by multiplying an
integer by a non-positive power of ten, i.e., expressible as i x 10"-n where i and n are integers and n >= 0.

5.2.8.11 Integer

The datatype Integer represents a signed integer number, as an exact integer value with no fractional part.

5.2.8.12 NonNegativelnteger

The datatype NonNegativelnteger represents an integer domain value that is restricted to be non-negative (i.e., either
Zero or positive).

5.2.8.13 MeasureDatatype

The datatype MeasureDatatype represents the set of data values that represent a quantity as a numeric amount
expressed in terms of a specific unit based on a scale or using a scalar reference system.! This datatype is used to
represent data values that are physical quantities.

5.2.8.14 UnitOfMeasure

The datatype UnitOfMeasure is the class of defined units of measure for physical quantities. Values of this datatype
are used to specify the numeric amount of a measure in a commonly agreed scale. Units of measure used in the
NEO content are defined by the ISO 80000 (multi-part) standard.

5.2.8.15 Enumeration (Non-extensible EnumeratedType)

Enumerated datatypes are either enumerations (closed domains for which all values have been represented) or
codelists (open domains which are potentially incomplete and may have new values).

Each EnumeratedType is associated with an EnumeratedTypeScheme that models the listed values as members of a
collection of related data values which may be hierarchically structured, with broader values and “top members”.

While the EnumeratedType and EnumeratedTypeScheme for a specific concept differ in formal structure, the
meaning of the underlying domain concept is the same (for example, the EnumeratedType and
EnumeratedTypeScheme for BuildingFeatureFunction are different ways of organizing “the allowed set of functions
that may be identified for buildings”).

The datatype Enumeration represents a set of related domain values (called listed values) that are allowable values
for a property. The listed values of an enumeration are completely specified, and an enumeration is not extensible.
5.2.8.16 Codelist (Extensible EnumeratedType)

The class Codelist represents a set of related domain values that are allowable values for a property. The listed
values of a codelist are not considered as completely specified, and a codelist is therefore extensible by following the
applicable governance procedures for that codelist.

Each Codelist is associated with an EnumeratedTypeScheme (Section 5.2.8.15).

5.2.8.17 ListedValue

The datatype ListedValue represents items that are specified as a member of an enumerated type.

5.2.8.18 ComplexDatatype

The datatype ComplexDatatype represents datatypes consisting of multiple properties. At least one of the component
properties provides a principal data value, that is, a data value characterizing a domain entity (for example: the

11 OpenGIS Geography Markup Language (GML) Encoding Standard, v3.2.1 (ref # OGC 07-036). Ed., Clemens Portele. Open
Geospatial Consortium Inc. 2007-08-27. When used as a noun, 'measure’ is a synonym for physical quantity.

25

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

elevation of an aerodrome, or the contact address for a facility), while the other component properties may provide
contextual information or metadata about the asserted domain value (for example: an estimated accuracy for the
elevation measure, or a reason why the contact address is absent).

For example, a complex datatype may combine an elevation measure with identification of the reference datum and
an evaluation of its accuracy. The complex datatype would be composed of three properties each having its own
datatype: the first property specifying a real value for the elevation, the second property specifying a vertical
reference datum for the elevation measure, and a third property specifying the accuracy of the elevation measure.

Other complex datatypes are used to represent intervals of various kinds, including intervals of real numbers and time
intervals. A complex datatype for an interval includes properties for the beginning and end points of the interval, and
an indication of whether each interval limit is open, closed, or inapplicable.

Two special patterns of complex datatypes, DatatypeMeta and DatatypeUnion, are described in the following
sections.

5.2.8.19 DatatypeUnion

The datatype DatatypeUnion represents a complex datatype consisting of a set of properties that are alternatives.
Only one of the constituent properties is evaluated for any data instance.*?

One pattern for a datatype union consists of alternative properties that either provide a value for a domain attribute or
else a reason that the data value is absent. For example, a datatype union may be used for reporting either the
availability status of an aerodrome runway, or the meaning of reporting no value (for example: "No Information”).

5.2.8.20 DatatypeMeta

The datatype DatatypeMeta represents a datatype with at least one property that provides a principal data value
optionally accompanied by property-level metadata including, for example, restrictions on use, temporal extent, or
provenance of the principal data value. Each metadata component has its own datatype. The included datatypes may
be primitive or complex.

5.3 NEO Representation using Semantic Web Languages

5.3.1 The Semantic Web

The information modeling elements of the NEO information model can be represented using the Web Ontology
Language, Second Edition (OWL 2), as defined by W3C Recommendations for the Semantic Web. The use of OWL 2
enables the encoding of NEO content in machine-readable formats that can be used with Web-based applications
and shared on the Web to provide machine-processable semantics for data published from multiple sources (for
example, as Linked Data).'3

The Semantic Web is a virtual set of distributed data accessible on the internet that is represented using standards-
based, machine-processable descriptions that allow the data to be application-independent and available for re-use in
accordance with a framework of common standards.** Data in the Semantic Web can be discovered, queried,
aggregated, and analyzed as part of the larger information ecosystem by leveraging the semantics (i.e., meanings) of
the data. The phrase “the Web of Data” is used synonymously with the Semantic Web in this sense.*®

The term “Semantic Web” also encompasses the technologies, including the standards and operational infrastructure,
that support the creation of the Web of Data. Semantic Web standards define a framework (including representation
languages and exchange formats) for describing data in a reusable, machine-processable way, as well as guidelines
for creating the operational environment on the Web.6 Finally, the Semantic Web relies on an implemented
technology infrastructure that enables the real-time publication, linking, and processing of data published in Semantic
Web exchange formats.

The World Wide Web Consortium (W3C) has developed a set of recommendations (standards) that can be used
together with non-W3C standards (such as Unicode) to support the representation and exchange of information on
the Web. All of these recommendations depend upon unique identifiers using standardized character sets to identify

2 |n UML terms, this datatype has the <<union>> stereotype pattern.

13 A similar approach to data definition and data linking may be used in a closed networked system, rather than on the open internet,
when required for mission-specific purposes.

14 The Semantic Web. Michael C. Daconta, Leo J. Obrst, and Kevin T. Smith. Wiley Publishing, Inc. 2003. Page 4.

15 Linked Data Glossary, W3C Working Group Note 27 June 2013 (http://www.w3.0rg/TR/Id-glossary/)

16 “The Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and
community boundaries.” (W3C FAQ, What is the Semantic Web: http://www.w3.0rg/2001/sw/SW-FAQ)

26

http://www.w3.org/TR/ld-glossary/
http://www.w3.org/2001/sw/SW-FAQ

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

resources on the Web. Initial efforts to support the sharing of information on the Web through the creation of
Extensible Markup Language (XML)*7 focused on the representation of individuals as data objects (i.e., instance
data) together with metadata about them. Subsequently, three W3C recommendations (RDF, RDFS, and OWL)
defined new representation languages that are used to formalize the semantics of data and its real-world domains in
a machine-processable form. Those recommendations together enable support for automated logical reasoning
about the data (such as inferencing to check constraints or to conclude additional facts from known data) as well as
querying for data across the Web.

The set of standards used to enable sharing of the semantics of information on the Web is often referred to as the
“Semantic Web Stack”, because later recommendations built upon and extended the capabilities of earlier standards.
Figure 3 shows graphically the reliance on and dependencies among the recommendations and standards that are
used together to enable the Semantic Web.

The key standards for capturing the semantics of data are RDF, RDFS, and OWL. The W3C Web Ontology
Language (OWL) is a Semantic Web language designed to represent complex knowledge about entities, groups of
entities, and relationships between entities. OWL is a formal language based on computational logic, which allows
knowledge expressed in OWL to be processed by computer programs, including reasoners.8

User interface and Applications

Trust
Proof
’ Unifying Logic
' i
OwWL
SPARQL ‘ (omology) Rules o
(Query) | |
ne]
|| RDFS || ©

RDF (Data interchange)

XML ‘

‘ URI Unicode

Figure 3 — The Semantic Web Stack!®

The Semantic Web stack supports a common framework that allows data to be shared and reused across
application, enterprise, and community boundaries, through the extraction, representation, storage, retrieval, and
analysis of machine-processable data.?® This framework include standards that define exchange formats (primarily
RDF) for sharing data on the Web (sometimes called the “Web of Data”).

Data that is prepared, published, shared, and consumed in the Semantic Web is called “Linked Data”. As defined by
the W3C, Linked Data is data that is implemented using:

A pattern for hyperlinking machine-readable data sets to each other using Semantic Web techniques,
especially via the use of RDF and URIs. This enables distributed SPARQL queries of the data sets and a
browsing or discovery approach to finding information (as compared to a search strategy). Linked Data is

17 XML was developed in the late 1990s to provide a syntax for creating markup languages to capture metadata.

18 W3C Web Ontology Language (OWL). Accessed online at: http://www.w3.0rg/OWL/.

19 Based on Semantic Web and Other W3C Technologies to Watch. Steve Bratt, CEO, W3C. October 2006. Retrieved online at:
http://www.w3.0rg/2006/Talks/1023-sb-W3CTechSemWeb/. There is some variation in depictions of the stack, which has changed
over the years with the addition of new recommendations such as the Rules Interchange Format (RIF) and the adoption of IRIs to
provide a broader method than URIs for constructing unique identifiers. There are also variations in which the diagram consists of
uniform flat layers, although in fact the relationship between layers is more complex than in the stack-of-pancake depictions.

2 |inked Data Glossary, W3C Working Group Note 27 June 2013. (http://www.w3.0rg/TR/Id-glossary/)

27

http://www.w3.org/OWL/
http://www.w3.org/2006/Talks/1023-sb-W3CTechSemWeb/
http://www.w3.org/TR/ld-glossary/

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

intended for access by both humans and machines. Linked Data uses the RDF family of standards for data
interchange (e.g., RDF/XML, RDFa, Turtle) and query (SPARQL).*

Guidance on the production and publication of data instances is outside the scope of the NEO Standard. In January
2017, the W3C Data Activity published “Data on the Web Best Practices”, a W3C Recommendation (31 January
2017), available at http://www.w3.0rg/TR/dwbp/. Topics covered in that publication include: metadata, licenses,
provenance, quality, versioning, identifiers, formats, vocabularies, access (APIs), and data preservation.??

5.3.2 Selecting OWL Constructs for Representation of NEO Content

The formal representation language used for the NEO content is the W3C Web Ontology Language defined in the
OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax.?® Elements from OWL 2 are
used to represent the structural components of the NEO information model. The ontology is a formal representation
of domain knowledge as a logical theory consisting of classes, subclass relationships, properties, and assertions
(such as class-disjointness). The core structure of the ontology consists of a hierarchy of entity-class concepts used
to categorize phenomena in a universe of discourse. This taxonomic backbone of the NEO is derived from the
hierarchy of entity types in the NAS. NEO properties are based on the presumed properties of real-world entities, and
their values are constrained accordingly.

The use of OWL 2 allows the ontology to be expressed in a formal language that supports machine-processing. The
specific variant of OWL 2 used is OWL-DL, which supports tractable reasoning by inference engines. Reasoners may
be used both to evaluate the quality of the ontology as a domain model, and also to support the derivation of implicit
knowledge about data instances by applying the domain theory to collected assertions.

The ontology also includes annotations that document the human-readable names and definitions of the modeled
concepts. Annotation properties from OWL 2 and other recommendations — including the Simple Knowledge
Organization System (SKOS) — are used to incorporate documentation of NAS-derived semantics within the ontology
components.

The NEO ontology specification uses the OWL 2 Structural Specification in the following ways:
1. OWL Classes are used to represent NEO Entity and Datatype Classes.

2. OWL Object Property Expressions are used to represent NEO Entity Relationships and some NEO Entity
Attributes.

OWL Data Property Expressions are used to represent the remaining NEO Entity Attributes.

4. OWL Class expressions are used to represent class unions and intersections; property restrictions; and
cardinality restrictions (OWL 2 Structural Specification, Section 8).

5. OWL Class axioms are used to represent SubClassOf and DisjointClasses (OWL 2 Specification, Section
9.1).

6. OWL Object Property axioms are used to represent property Domain and Range declarations (OWL 2
Specification, Section 9.2 and 9.3).

7. OWL Datatypes are used (OWL 2 Specification, Sections 4 and 7) to represent NEO primitive datatypes.

8. Several OWL 2 Annotation properties (viz., rdfs:label, rdfs:isDefinedBy,
owl:versionInfo) are used for NEO DocumentationProperty.

The NEO ontology specification also reuses annotation properties from other standards; these annotation properties
are listed in Section 5.3.6.

5.3.3 Representing NEO Information Model Concepts in OWL

The standard 1SO 19150-2, Geographic information — Ontology — Part 2: Rules for developing ontologies in the Web
Ontology Language (OWL), defines a rule-based transformation from ISO 19100-series compliant UML application
schemas to OWL 2 ontologies. The NEO Standard relies on correlations defined by those transformation rules in
order to determine the OWL 2 representation of modeling elements in the NEO information model.

21 Linked Data Glossary, W3C Working Group Note 27 June 2013. (http://www.w3.0rg/TR/Id-glossary/)

22 Guidance from the W3C Data Activity acknowledges the importance of standards to provide semantics for shared data. All
semantic resources are presented under the topic of “Vocabularies”, including ontologies and taxonomies as well as controlled
terminologies.

2 Accessible online at: http://www.w3.0rg/TR/owl2-syntax/.

28

http://www.w3.org/TR/dwbp/
http://www.w3.org/TR/ld-glossary/
http://www.w3.org/TR/owl2-syntax/

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

The rules specified in ISO 19150-2 are the basis for determining the representation for most elements of the NEO
information model in terms of constructs from OWL 2 and other Semantic Web standards, as listed in Table 10, Table
11, and Table 12. Where ISO 19150-2 does not address the OWL representation for an aspect of the ISO 19109
GFM model (especially, the disjointness of sibling subclasses indicated by ‘uniquelnstance’), an OWL 2 encoding
was developed (see Section 5.4.3.4).

5.3.4 Unique Identifiers in OWL: IRIs

OWL 2 ontologies and ontology elements are identified using Internationalized Resource Identifiers (IRIs). An IRl is a
finite-length sequence of zero or more characters used for identifying an abstract or physical resource. A resource
can be anything that has identity. IRIs may be used solely for identification of resources, or they may also be used to
locate and access resources.

NOTE An Internationalized Resource Identifier is a sequence of characters from the Universal
Character Set (Unicode/ISO 10646) that forms an identifier for a resource. IRIs
complement an older format, Uniform Resource Identifiers (URIs), which allows the use of
only a subset of the ASCII character set to construct identifiers. A standardized mapping
from IRIs to URIs is defined in the IRI specification. When a resource identifier is used for
resource retrieval, it may be necessary to determine the associated URI, because retrieval
mechanisms may be defined only for URIs. Every URI is by definition an IRI.24

An encoding of the NEO content is a Web resource identified by an IRI that is a URI. In addition, each component in
the encoded NEO content — including its classes, properties, and individuals — is a resource and, as such, is identified
by an IRI that is a URI.

The use of URIs for the NEO content and its components is consistent with requirements for the identification of
resources on the internet. The intent of the World Wide Web is to enable sharing of locatable resources across a
global community with both known and unanticipated users. Information-sharing is supported by use of a single
global identification system that provides a common basis for unique identification of resources across the Web.
Identification of Web resources by IRIs and URIs is a recommended practice of the World Wide Web Consortium
(W3C). Benefits of using URIs to locate resources include linking, caching, bookmarking, and indexing by search
engines. Key to the use of URIs is that each URI should identify a single distinct resource.?®

5.3.5 NEO Structural Elements in OWL

The structural elements of NEO include its entity classes, generalization relationships, subclass-disjointness axioms,
characteristics of entities (including their attributes and relationships), and types of data values. The main Semantic
Web construct used to represent each of these kinds of elements is identified below. Details of the encoding are
discussed in Section 5.4.

e The NEO content comprises an owl : Ontology of NEO entities (with properties) and an
owl:0Ontology of NEO enumerations (specifying their allowed listed values).

e Entity classes in the NEO content are represented by instances of owl :Class.

e Class generalizations in the NEO content are represented by the property rdfs:subClassOf. The NEO
information model represents only the type-generalization direction of the Inheritance Relation in the ISO
19109 GFM. The inverse type-specialization concept is logically implicit in the interpretation of the subclass
property and may be logically inferred.

e Disjoint sibling subclasses are indicated in the ISO 19109 GFM by the Boolean property ‘uniquelnstance’.
This is represented in the encoded NEO content by OWL class axioms using
owl:AllDisjointClasses to enumerate the classes that are disjoint. Disjoint classes have no
individuals as members in common.

e Characteristics of entities in the NEO content are represented by instances of either
owl:DatatypeProperty or owl:ObjectProperty (depending on the value type of the property).

24 See: http://tools.ietf.org/html/rfc3987#section-3.1.

2 Resources are broadly inclusive of Web pages, images, concepts, and even real-world objects. Architecture of the World Wide
Web, Volume One. W3C Recommendation 15 December 2004. lan Jacobs and Norman Walsh, Eds. Available online at:
http://www.w3.org/TR/webarch/#identification.

29

http://tools.ietf.org/html/rfc3987#section-3.1
http://www.w3.org/TR/webarch/#identification

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

e Datatypes in NEO include XSD datatypes and also specialized datatypes from the NAS, including
enumerated types, measures, complex datatypes, and datatypes with metadata. Enumerated types are
represented using skos:Concept and skos:ConceptScheme.

5.3.6 NEO Documentation Properties in OWL

The encoded NEO content includes information intended for human consumption as well as for machine reasoning.
This documentation is represented using annotation properties for OWL 2 (listed in Section 5.3.2 above) and several
other information standards. The annotation properties used for NEO documentation are presented below, grouped
by standard. Their specific use with NEO components is explained in the presentation of the NEO encoding.

e OWL
o owl:versionInfo

® RDF Schema
o rdfs:label

o rdfs:isDefinedBy
® SKOS
o skos:altLabel
o skos:definition
o skos:preflabel
® |SO 19150-2
o 1s019150-2:associationName
o 1s019150-2:constraint
® Dublin Core Terminology
o dct:isPart0Of26

o dct:source

The documentation properties are applied to the NEO as a whole and also to its components, as specified in the NEO
information model presented in Section 5.2.2.

5.3.7 NEO Datatypes in OWL

NEO primitive datatypes are represented using OWL 2 datatypes. However, the datatypes available in OWL 2 are
limited when compared to the spectrum of datatypes defined in the NEO information model (Sections 5.2.8.13
through 5.2.8.20).

From the OWL 2 Structural Specification (Section 5.2):

An IRI used to identify a datatype in an OWL 2 DL ontology must
e be rdfs:Literal, or
e identify a datatype in the OWL 2 datatype map (see Section 4), or
e not be in the reserved vocabulary of OWL 2 (see Section 2.4).

The conditions from the previous paragraph and the restrictions on datatypes in Section 11.2 require each
datatype in an OWL 2 DL ontology to be rdfs:Literal, one of the datatypes from Section 4, or a datatype defined by
means of a datatype definition (see Section 9.4).

The NEO information model requires complex datatypes in order to represent NAS datatypes.?” Therefore, this NEO
Standard defines and encodes additional datatypes, using OWL classes and properties as described in Section 5.4.4.

26 This property is used only in the publication of REST APIl-accessible ontology resources (see Section 6.3.3).
27 NAS - Part 1, Section 4.1, Figure 3.

30

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

5.4 NEO Content Encodings

5.4.1 Introduction

The NEO Standard specifies two technology-specific encodings of the NEO content that each accurately represents
the information model in the NEO Standard:

e RDF/XML encoding — RDF/XML is the primary concrete exchange syntax for OWL 2, as specified in the
W3C Recommendations. All OWL 2 tools are required to support the OWL 2 RDF/XML syntax (see Section
2.1 of the OWL 2 Conformance document??).

e N-Triples — N-Triples is a line-based, plain-text format for encoding an RDF graph that may be used in
information exchange without necessitating the complicated parsing required for RDF/XML. In N-Triples,
each line consists of a sequence of three RDF terms representing, respectively, the Subject, Predicate, and
Object of an RDF triple.?®

Some aspects of the NEO content encoding are the same for both technologies.

The following sections present the general aspects of the NEO content encodings first, followed by specific
differences for the RDF/XML and N-Triples encodings. Both encodings use IRIs as described in Section 5.4.2 to
uniquely identify ontology elements. Section 5.4.3 specifies the general approach for encoding the entity modeling
concepts of the NEO information model in OWL 2. Section 5.4.4 describes the encoding of datatypes. Section 5.4.5
lists the differences between RDF/XML and N-Triples encodings of the NEO content.

The RDF/XML encoding employs the approach defined in ISO 19150-2:2015, as implemented and extended in the
OGC Testbed-12 ShapeChange Engineering Report (OGC 16-020). The N-Triples encoding is derived from the
RDF/XML encoding.

5.4.2 Namespace and ldentifiers

5.4.2.1 Introduction

In the World Wide Web, resources must be uniquely identified by IRIs. Related resources may be grouped together
into a “namespace” using a specified IRI structure for all resources in the namespace. The NEO content is a web
resource that uses two namespaces, whose IRIs are specified in this Standard.

5.4.2.2 Namespaces

A namespace identifies a collection of resources by referencing them using identifiers (IRIs) that share a common
initial prefix or “stem” (also referred to as a URI base). An RDF namespace is represented by a URI base used in all
identifiers for a set of related resources. The nhamespace URI base is concatenated with a separator followed by a
local name to create the complete IRI identifier for an RDF resource.*

Resources from different namespaces may be referenced in the specification of a new resource. Modeling elements
from multiple W3C Web resources are used for the representation of NEO content. Every modeling element from
RDF, RDFS, OWL, and SKOS that is used in encodings of NEO content has a unique IRI that identifies that element
in relation to its namespace. For example, the OWL concept Class (which has the IRI
http://www.w3.0rg/2002/07/owl#Class) is in the OWL namespace (http://www.w3.0rg/2002/07/owl#).

NOTE The NEO Standard and NEO content in RDF/XML use prefix abbreviations for common
namespaces as declared in the OWL Structural Specification (Section 2.4); e.g., 'owl' for
the namespace identified by http://www.w3.0rg/2002/07/owl#. NEO content in N-Triples
uses only fully specified namespace prefixes.

Components of the NEO content have a URI base that identifies them as belonging to one of the two NEO content
namespaces. NEO entity classes and their properties are defined in one namespace, while NEO enumerations are
specified in a separate namespace. The identifiers for these namespaces are specified in the next section.

28 OWL 2 Web Ontology Language Conformance (Second Edition). W3C Recommendation. 11 December 2012. Michael Smith, et
al., eds. Published online at: http://www.w3.0rg/TR/2012/REC-owl2-conformance-20121211/.

2 RDF 1.1. N-Triples. W3C Recommendation. 25 February 2014. David Beckett. Published online at: http://www.w3.0org/TR/n-
triples/.

30 In the concatenation of a URI base with a local name, a separator (which may be either the hash (“#") or the forward slash (“/"))
character is required between the two parts. The type of separator used depends upon the supported retrieval mechanism.

31

http://www.w3.org/2002/07/owl#Class
http://www.w3.org/2002/07/owl
http://www.w3.org/2002/07/owl
http://www.w3.org/TR/2012/REC-owl2-conformance-20121211/
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/n-triples/

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

5.4.2.3 Identifiers
This NEO Standard assigns a unique URI base for each of the two namespaces in which NEO content is specified.

e URI base for NEO entity classes (with properties): http://api.nsgreg.nga.mil/ontology/neo-ent

e URI base for NEO enumerations: http://api.nsgreg.nga.mil/ontology/neo-enum

The former contains the entity concepts of the ontology (with their properties), while the latter contains the
enumerations (with their listed values) defined for use with NEO properties.

Each entity class belonging to the NEO content has a unique identifier which embeds the first URI base, above. A
NEO entity-class identifier is the combination of that URI base and (following a “#” separator) a unique terminal label
for the concept (e.g., ‘Building’, ‘MountainPass’).

Each enumerated type belonging to the NEO content has a unique identifier which embeds the second URI base,
above. A NEO enumerated-type identifier is the combination of that URI base and (following a “/” separator) a unique
terminal label for the concept (e.g., ‘AerodromePhysicalConditionType, ‘BuoyBuoyShapeType”).

The full patterns for NEO identifiers are specified in Section 5.4.2.5.

NEO IRIs are in the form of a Uniform Resource Locator (URL). A URL specifies the location of, and access to, a
resource on the Internet. A URL specifies the protocol of the resource (e.g., 'http' or 'ftp"), the domain name for the
resource (e.g., 'nsgreg.nga.mil’), and the relative location of the resource within that domain. If the site host is active,
then accessing the specified resource results in retrieval of a representation (i.e., the content) of the resource;
however, site persistence is not guaranteed.

5.4.2.4 Versioned and Non-versioned IRIs for NEO

The NEO Standard specifies both versioned and non-versioned IRIs for the NEO content.

The versioned IRI shall be used for authoritative identification of NEO content in information exchange and data
sharing. The versioned IRI shall also be used for official specification of the NEO content baseline to be used in
systems development and acquisition. Examples of the versioned IRI:

e Versioned IRI for 'neo-ent' (example): http://api.nsgreg.nga.mil/ontology/neo-ent/1-3
e Versioned IRI for 'neo-enum' (example): http://api.nsgreg.nga.mil/ontology/neo-enum/1-3

For convenience, the REST APl component of the NSG Standards Registry supports the retrieval of the latest version
of the NEO content when the non-versioned IRI is used.

e Non-versioned IRI for 'neo-ent": http://api.nsgreg.nga.mil/ontology/neo-ent

e Non-versioned IRI for 'neo-enum': http://api.nsgreg.nga.mil/ontology/neo-enum

Non-versioned IRIs (where supported) shall be used only as a shortcut that is redirected by the HTTP resolver to the
latest versioned resource. The version pattern component is required in a resolved NEO IRI.
5.4.2.5 Form of IRIs for NEO Content
The IRIs for NEO content are constructed in accordance with the following pattern:
protocol "://" domain "/" resource-type "/" resource "/" version ["#" | “/”] concept [*/” subconcept]
Each component in the pattern is case-sensitive and determined as follows:
e protocol — always 'http'
e domain — always 'api.nsgreg.nga.mil'
e resource-type — always 'ontology’

e resource — 'neo-ent' when the concept is a NEO entity class or property; ‘neo-enum’ when the concept is a
NEO enumerated type or listed value

e version — designates the version of the resource (e.g., '1-1', '1-2")

e concept — designates a specific concept (e.g., 'Aerial’, 'AdministrativeBoundary.length’,
'‘ApronAccessibilityStatusType’)

32

http://api.nsgreg.nga.mil/ontology/neo-ent
http://api.nsgreg.nga.mil/ontology/neo-enum
http://api.nsgreg.nga.mil/taxonomy/ntax
http://api.nsgreg.nga.mil/ontology/neo-enum

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

e subconcept (optional) — designates a listed value of an enumerated type (e.g., 'locked’ is a subconcept of
‘ApronAccessibilityStatusType’).

In IRIs for NEO content, the separator between version and concept is assigned conditionally as follows:

e The separator “#” is used with each concept in the 'neo-ent' namespace (i.e., the concept is an entity class
or property).

e The separator “/” is used with each concept in the 'neo-enum’' namespace (i.e., the concept is an
enumerated type or listed value).

The components described above are concatenated into a single string as specified by the pattern (above), to form
the IRI that designates the ontology component. Examples for different types of ontology components:

http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#Aerial (The OWL class representing the entity class
‘Aerial' in the NEO content, version 1-3)

http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#Building (The OWL class representing the entity class
‘Building’ in the NEO content, version 1.1)

http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#AdministrativeBoundary.length

(The OWL property representing the entity
property ‘AdministrativeBoundary.length’ in
the NEO content, version 1-3)

http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType

(The OWL class representing the enumeration
'‘ApronAccessibilityStatusType' in the NEO
content, version 1-3)

http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/locked

(The OWL class representing the listed value of
‘locked’ for 'ApronAccessibilityStatusType' in
the NEO content, version 1-3)

5.4.3 General NEO Encoding

5.4.3.1 Introduction

The NEO information model in Section 5.2 defined eight basic categories of information modeling concepts:
Ontology, EntityClass, DisjointClasses, EntityProperty (including EntityAttribute and EntityRelationship), DataType,
and DocumentationProperty. This section specifies the encodings for NEO modeling concepts using OWL 2 and
other Semantic Web standards.

Abstract classes are not encoded. For example, the class EntityProperty (an abstract class) is not represented in the
encoding; instead, its concrete subclasses are encoded. The class DocumentationProperty is an abstract class,
which is not represented in the encoding. Instead, the specific documentation properties are assigned to the
appropriate modeling concepts in Table 10, Table 11, and Table 12, and encoded with them.

The Ontology and each EntityClass concept have several types of information specified, including required and
optional attribution. The IRI-valued attributes provide identification of the ontology components. The remaining
attribution provides the means of further specifying an information modeling element by attributes and relationships.

Encoding elements for the NEO information model components are specified in the tables in 5.4. The table format
used to document these encoding elements is as follows:

e The Reference column consists of a sequentially-assigned, non-normative identifier of the element (class or
property) that is provided for cross-referencing purposes. It may vary from version-to-version of this
document.

¢ The NEO Modeling Concept column specifies the class name or property name of the information
modeling concept being encoded.

o If the modeling concept is a class in the NEO information model, then the row is highlighted in light-
grey.

33

http://api.nsgreg.nga.mil/ontology/neo/1-1#Aerial
http://api.nsgreg.nga.mil/ontology/neo/1-1#Building
http://api.nsgreg.nga.mil/ontology/neo/1-1#AdministrativeBoundary.length
http://api.nsgreg.nga.mil/ontology/neo-enum/9.0/ApronAccessibilityStatusType
http://api.nsgreg.nga.mil/ontology/neo-enum/9.0/ApronAccessibilityStatusType/locked

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

o Properties are either attributes or relationships. Relationship names are prefixed by the italicized
phrase “Role name”.

e The NEO Encoding Element column specifies the OWL 2 or other Semantic-Web standard construct that
shall be used to represent the corresponding NEO Modeling Concept. NEO encoding elements are shown in
the forms used by the (mandatory) RDF/XML encoding of the NEO content, which utilizes namespace
abbreviations. (The optional N-Triples encoding requires the use of fully specified IRIs; see Section 5.4.5.3).

e The Cardinality of Element column indicates the number of occurrences of the element that are permitted
by the information model. This column has values only for properties and is dark-grey filled on rows
containing classes.

e The Value Type column indicates the modeling concept or specific datatype that is used to define the
value(s) of the element. This column has values only for properties and is dark-grey filled on rows containing
classes.

e The Notes column may contain comments, specifications of the actual value, or examples of values for the
element.
5.4.3.2 Encoding of the Ontology

The Ontology modeling concept is used to represent the NEO ontology as a self-documenting resource. Each
encoding of the NEO content consists of two Ontology entities ('neo-ent' and 'neo-enum’) characterized by properties
as specified in Section 5.2.2. The information model elements for the NEO content are encoded in OWL 2 and
supporting W3C languages, as specified in Table 10.

34

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table 10 — Encoding Elements for the Ontology

Ref NEO Modeling NEO Encoding Cardinality
Concept Element of Element Value Type Notes
1 Ontology owl:0Ontology Used to represent each of the two namespaces for NEO
content as a complete resource.
2 ontologyIRlI rdf:about Exactly one | IRI For example: http://api.nsgreg.nga.mil/ontology/neo-ent/1-3
3 versionIRI owl:versionIRI Exactly one | IRI For example: http://api.nsgreg.nga.mil/ontology/neo-ent/1-3
4 versioninfo owl:versionInfo Exactly one | CharacterString For example: “1-3”
5 label rdfs:label Exactly one | LocalizedContinuousString | The value is “NsgEnterpriseOntology”.
6 name skos:preflabel Exactly one | LocalizedCharacterString The value is “NSG Enterprise Ontology”.
7 alias skos:altLabel Zero or LocalizedCharacterString For example: “NEO”
more
8 definitionNote skos:definition Exactly one | LocalizedCharacterString The value is “Definition: The NSG Enterprise Ontology
(NEO) Standard defines a logic-based specification in the
W3C Web Ontology Language (OWL 2) of the domain
model for Geospatial Intelligence (GEOINT) information
shared in the U.S. National System for Geospatial
Intelligence (NSG). Description: The NSG Enterprise
Ontology contains a computer-interpretable representation
of entity classes, relationships, datatypes, and constraints
based on (and derived from) the NSG Enterprise Data model
(i.e., NSG Application Schema (NAS)), which is
implemented in two types of OWL 2 encodings: RDF/XML
and N-Triples.”
9 sourcelRlI rdfs:isDefinedBy | Exactlyone | IRI For the NEO Standard, the URL is:
http://nsgreg.nga.mil/doc/view?i=2615
10 | sourceTitle dct:source Exactly one | LocalizedCharacterString The value is “NSG Enterprise Ontology (NEO) Standard”.
11 Role name: owl:imports Zero or Ontology The imported ontology is represented by its IRI. For
dependency more example: http://def.isotc211.0rg/is019115/-
1/2014/Metadatalnformation

5.4.3.3 Encoding of EntityClass

The EntityClass modeling concept is used to represent sets of individuals that share the same nature and specific properties. An EntityClass is characterized by
the properties specified in Section 5.2.4, and selected documentation properties defined in 5.2.7. The information model elements for an EntityClass are encoded
in OWL 2 and supporting W3C languages as specified in Table 11.

35

http://api.nsgreg.nga.mil/taxonomy/ntax/base16Nov
http://api.nsgreg.nga.mil/taxonomy/ntax/base16Nov
http://nsgreg.nga.mil/doc/view?i=2615
http://def.isotc211.org/iso19115/-1/2014/MetadataInformation
http://def.isotc211.org/iso19115/-1/2014/MetadataInformation

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table 11 — Encoding Elements for EntityClass

Ref NEO Modeling NEO Encoding Cardinality Value Type Notes
Concept Element of Element yp
EntityClass owl:Class Used to represent entity types in NEO content
2 | classIRI rdf:about Exactly one | IRI For example: http://api.nsgreg.nga.mil/ontology/neo-ent/1-
3#LandAerodrome
3 | isAbstract 15019150~ If Boolean FALSE (By policy: FALSE, unless asserted as TRUE.)
2:isAbstract applicable,
then
exactly
one.
label rdfs:label Exactly one | LocalizedContinuousString | For example: ‘LandAerodrome’
name skos:preflabel Exactly one | LocalizedCharacterString For example: ‘Land Aerodrome’
alias skos:altLabel Zero or LocalizedCharacterString For example: ‘Airport’
more
7 | definitionNote skos:definition Exactly one | LocalizedCharacterString For example: (Land Aerodrome) “Definition: An aerodrome on land
intended to be used either wholly or in part for the arrival,
departure and surface movement of aircraft. Description: [None
Specified]”
sourcelRlI rdfs:isDefinedBy | Exactly one | IRI For example: http:/nsgreg.nga.mil/as/view?i=100436%*
constraint is019150- Zero or LocalizedCharacterString The value is a structured string containing the name of the
2:constraint more constraint rule, followed by a human-readable statement of the
constraint.
9 | Role name: rdfs:subClassOf If EntityClass For example: (the generalization of Land Aerodrome)
generalization applicable, http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#Aerodrome
then one or
more.

31 The EntityClass sourcelRI is a URL that incorporates the numerical Item Identifier value for the corresponding NAS Entity Type. The sourcelRI values for the other types of ontology
components also use this URL pattern.

36

http://api.nsgreg.nga.mil/ontology/neo/base17Feb#LandAerodrome
http://api.nsgreg.nga.mil/ontology/neo/base17Feb#LandAerodrome
http://nsgreg.nga.mil/as/view?i=100436
http://api.nsgreg.nga.mil/ontology/neo/base17Feb#Aerodrome

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

5.4.3.4 Encoding of DisjointClasses

The DisjointClasses modeling concept is used to represent collections of entity classes that are pairwise disjoint; that
is, no individual shall belong at the same time to more than one of the member classes in a specific collection. This
concept represents the constraint that sibling subclasses in the ontology are disjoint.

The encoding of NEO content uses owl :A11DisjointClasses to represent all DisjointClasses axioms

declaring class disjointness.3? Each DisjointClasses collection is characterized by the property ‘disjointMember’,
defined in Section 5.2.5, which identifies two or more entity classes as members of the disjoint-class collection. In the
NEO content, these collections contain a set of sibling subclasses, which shall not share members.

Table 12 — Encoding Elements for DisjointClasses

Ref NEO Modeling . Cardinality Value Notes

Concept NEO Encoding Element of Element Type

1 DisjointClasses owl:AllDisjointClasses Used to
represent
disjointness
of sibling
subclasses

2 Role name: owl :members If applicable, | EntityClass

disjointMember then two or
more.

Both encodings of NEO content represent DisjointClasses using the encoding elements above. There are some
differences in the implementation-specific encodings, however, which are discussed in Section 5.4.5.

5.4.3.5 Encoding of EntityAttribute

The EntityAttribute modeling concept represents a characteristic that describes an entity in terms of a data value.
EntityAttribute inherits attribution from its abstract superclass, EntityProperty (see Table 7), and also has specialized
properties (Table 8). Applicable documentation properties (Section 5.2.7), including name and source information for
the attribute, are also encoded.

There are two encodings for EntityAttribute, depending upon the datatype used as the attribute’s property range.

1. For any EntityAttribute whose range is a PrimitiveDatatype, the EntityAttribute is encoded as an
owl :DatatypeProperty with the range encoded using the appropriate OWL 2 datatype. (See Table
13 for this encoding.)

2. For any EntityAttribute that has a non-primitive DataType as its range, the EntityAttribute is encoded as an
owl :0bjectProperty with the range encoded as described in Section 5.4.4. (See Table 14 for this
encoding).

The following diagram shows the alternative encoding patterns for EntityAttribute.
e EntityAttributeA has the primitive datatype Real as its property range (value type), while

e EntityAttributeB has the class ReallntervalMeta as its property range. ReallntervalMeta is a subtype of
DataypeWithMetadata, a complex datatype.

The first EntityAttribute is encoded using owl : DatatypeProperty, while the latter is encoded using
owl:0bjectProperty. This alternative encoding is due to the difference in how NEO and OWL handle
datatypes (Section 5.2.8.1). The range of the property owl : DatatypeProperty (as defined by the W3C
Recommendation) is limited to OWL 2 datatypes. When NEO datatypes represented as classes are the range of an
EntityAttribute, that EntityAttribute must be encoded as an owl : ObjectProperty.

%2 The NEO Standard uses owl :Al1DisjointClasses to represent all class axioms declaring class disjointness between two
or more classes. The OWL 2 Functional Syntax maps OWL DisjointClasses to RDF graphs using owl :disjointWith for two
classes, and owl :Al1DisjointClasses for three or more classes. The OWL Primer illustrates use of
owl:AllDisjointClasses for the 2-class case. RDF graphs containing owl:A11DisjointClasses constructs with two
or more classes are mapped to DisjointClasses in the OWL 2 Functional syntax. (OWL 2 Mapping to RDF, Section 3.2.5)

37

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

EntityAttributeA

<owl:DatatypeProperty rdf:about="http://api.nsgreg.nga.mil/ontology/neo-
ent/8.0#Entity123.EntityAttributeA"/>

(EntityAttributeA w
Encode as <rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#Real" />
L rangeValueType : Real J <skos:prefLabel xml:lang="en">Entity Attribute A</skos:prefLabel>

.4

- <rdfs:label xml:lang="en">EntityAttributeA</rdfs:label>
If the Property range is </owl:DatatypeProperty>
a Primitive Datatype

EntityAttributeB

<owl:ObjectProperty rdf:about="http://api.nsgreg.nga.mil/ontology/neo-
ent/8.0#Entity123.EntityAttributeB" />

(EntityAttributeB W <rdfs:range
LrangeValueType: ReallntervalMetaJ rdf:resource="http://api.nsgreg.nga.mil/ontology/neo/8.O#fRealintervalMeta"/>

= <skos:prefLabel xml:lang="en">Entity Attribute B</skos:prefLabel>

<rdfs:label xml:lang="en">EntityAttributeB</rdfs:label>
<fowl:ObjectProperty>

If the Property range is
a Complex Datatype

Figure 4 — Range-based Alternative Encodings for EntityAttribute

38

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table 13, below, presents the OWL 2 encoding for an EntityAttribute that has a primitive datatype as its property range.

Table 13 — Encoding Elements for EntityAttribute (with PrimitiveDatatype Range)

Ref NEO Modeling
Concept

Cardinality

NEO Encoding Element of Element

Value Type Notes

EntityAttribute owl:DatatypeProperty EntityAttribute with a primitive datatype as range.

2 | propertylRI rdf:about Exactly one IRI For example: http://api.nsgreg.nga.mil/ontology/neo-
ent/1-
3#ElectronicRecordsManagement.vitalRecordsIndicat
or

3 | label rdfs:label Exactly one LocalizedContinuousString For example:
"ElectronicRecordsManagement.vitalRecordsIndicator

4 | name skos:preflabel Exactly one LocalizedCharacterString For example: "Electronic Records Management
Information : Vital Record Indicator"

alias skos:altLabel Zero or more | LocalizedCharacterString For example: "essential record"

definitionNote skos:definition Exactly one LocalizedCharacterString For example (for
ElectronicRecordsManagement.vitalRecordsIndicator):
"Definition: An indication that a managed record is
considered essential to continuity of operation during
and after emergencies or disaster conditions.
Description: Also known as an Essential Record (as
specified in the U.S. Federal Continuity Directive 1
(FCD 1) 2012)."

sourcelRlI rdfs:isDefinedBy Exactly one IRI For example: http://nsgreg.nga.mil/as/view?i=194725

rangeValueType rdfs:range Exactly one PrimitiveDatatype For example (for
ElectronicRecordsManagement.vitalRecordsIndicator):
http://www.w3.0rg/2001/XMLSchema#boolean

9 | Role name: rdfs:domain Zero or more | EntityClass or DataType A class representing a non-primitive DataType may

characterizedEntity have properties.

The EntityClass is referenced by its IRI. For example
(for the domain of
ElectronicRecordsManagement.vitalRecordsIndicator):
http://api.nsgreg.nga.mil/ontology/neo-ent/1-
3#ElectronicRecordsManagement

Table 14, below, presents the OWL encoding for an EntityAttribute that has a non-primitive datatype as its property range.

39

http://api.nsgreg.nga.mil/ontology/neo/8.0#ElectronicRecordsManagement.vitalRecordsIndicator
http://api.nsgreg.nga.mil/ontology/neo/8.0#ElectronicRecordsManagement.vitalRecordsIndicator
http://api.nsgreg.nga.mil/ontology/neo/8.0#ElectronicRecordsManagement.vitalRecordsIndicator
http://api.nsgreg.nga.mil/ontology/neo/8.0#ElectronicRecordsManagement.vitalRecordsIndicator
http://nsgreg.nga.mil/as/view?i=194725
http://www.w3.org/2001/XMLSchema#boolean
http://api.nsgreg.nga.mil/ontology/neo/8.0#ElectronicRecordsManagement
http://api.nsgreg.nga.mil/ontology/neo/8.0#ElectronicRecordsManagement

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table 14 — Encoding Elements for EntityAttribute (with non-PrimitiveDatatype Range)

Ref NEO Modeling . Cardinality
4 Concept NEO Encoding Element of Element Value Type Notes
EntityAttribute owl:0bjectProperty EntityAttribute with a non-primitive datatype as range.
2 | propertylRI rdf:about Exactly one IRI For example: http://api.nsgreg.nga.mil/ontology/neo-
ent/1-3#Building.featureFunction
3 | label rdfs:label Exactly one LocalizedContinuousString For example: "Building.featureFunction"
4 | name skos:preflabel Exactly one LocalizedCharacterString For example: "Building : Feature Function"
5 | alias skos:altLabel Zero or more | LocalizedCharacterString For example: "purpose”
6 | definitionNote skos:definition Exactly one LocalizedCharacterString For example (for Building.featureFunction): "Definition:
A purpose of, or intended role served by, a feature.
Description: [None Specified]"
7 | sourcelRI rdfs:isDefinedBy Exactly one IRI For example: http://nsgreg.nga.mil/as/view?i=101855
rangeValueType rdfs:range Exactly one DataType {Abstract} The datatype is referenced by its IRI. For example (for
[excluding Building.featureFunction):
PrimitiveDatatype] http://api.nsgreg.nga.mil/ontology/neo-ent/1-
3#BuildingFeatureFunctionCodeMeta
9 | Role name: rdfs:domain Zero or more | EntityClass The EntityClass is referenced by its IRI. For example
CharacterizedEntity (for Building.featureFunCtion):

http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#Building

5.4.3.6 Encoding of EntityRelationship

The EntityRelationship modeling concept represents a characteristic that describes an entity in terms of its association with another entity. EntityRelationship
inherits the properties from its generalization in the NEO information model (see Table 7), and also has the specialized properties defined in Table 9. Applicable
documentation properties (Section 5.2.7), including name and source information for the relationship, are also encoded.

EntityRelationships are encoded using owl : ObjectProperty. It should be noted that in the NEO encoding, an owl : ObjectProperty can represent
either an EntityAttribute or an EntityRelationship. In the former case, the range of the owl : ObjectProperty will be a NEO non-primitive DataType. In the
latter case, the range of the owl : ObjectProperty will be a NEO EntityClass that is not a DataType.

The property owl : inverseOf is used only with encodings of EntityRelationship. Each EntityRelationship that models a relationship between an individual and a
relationship with properties shall have an owl : inverseOf property.

40

http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#Building.featureFunction
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#Building.featureFunction
http://nsgreg.nga.mil/as/view?i=100436
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#BuildingFeatureFunctionCodeMeta
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#BuildingFeatureFunctionCodeMeta
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#Building

Table 15 — Encoding Elements for EntityRelationship

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Ref NEO Modeling . Cardinality
4 Concept NEO Encoding Element of Element Value Type Notes
1 | EntityRelationship owl:0bjectProperty An EntityProperty relating individuals that are
instances of classes.
2 | propertylRI rdf:about Exactly one IRI For example: http://api.nsgreg.nga.mil/ontology/neo/1-
3#LandAerodrome.railway
3 | label rdfs:label Exactly one LocalizedContinuousString For example: "LandAerodrome.railway"
4 | name skos:preflLabel Exactly one LocalizedCharacterString For example: "Land Aerodrome-associated Railway"
5 | alias skos:altLabel Zero or more | LocalizedCharacterString For example: "airport railway"
6 | definitionNote skos:definition Exactly one LocalizedCharacterString For example (for LandAerodrome.railway): "Definition:
A railway that is associated with this land aerodrome
(for example: passes through or is located within its
perimeter). Description: [None Specified]"
sourcelRlI rdfs:isDefinedBy Exactly one IRI For example: http:/nsgreg.nga.mil/as/view?i=12602733
Role name: rdfs:domain Zero or more | EntityClass The EntityClass is referenced by its IRI. For example
CharacterizedEntity (for LandAerodrome.rainay):
http://api.nsgreg.nga.mil/ontology/neo/1-
3#LandAerodrome
9 | Role name: rdfs:range Zero or more | EntityClass The EntityClass is referenced by its IRI. For example
hasRangeEntityClass (for LandAerodrome.railway):
http://api.nsgreg.nga.mil/ontology/neo/1-3#Railway
10 | Role name: owl:inverseOf Zero or one EntityRelationship For example, “http://api.nsgreg.nga.mil/ontology/neo-
inverseOf ent/1-3#Runway.intersection” is the inverse of

“http://api.nsgreg.nga.mil/ontology/neo-ent/1-
3#Runwaylntersection.runway”.

As described in Section 5.2.6, NEO relationships that have properties (for example, the representation of a bilateral alliance relationship that was in place from
2008-2014) are modeled using a specific complex pattern.3* The pattern for encoding this kind of relationship represents the relationship using two OWL Classes;
there is a class for each direction of the relationship, and they are related as inverses. Each relationship Class has roles with the two entities that it relates. This
pattern is explained and illustrated in the ShapeChange Engineering Report, Section 8.2.5.

33 The EntityClass IRI incorporates the numerical Item Identifier value for the corresponding NAS Entity Type.
34 In UML, this concept is represented by a single modeling element, a UML AssociationClass.

41

http://api.nsgreg.nga.mil/ontology/neo/1-1#LandAerodrome.railway
http://api.nsgreg.nga.mil/ontology/neo/1-1#LandAerodrome.railway
http://nsgreg.nga.mil/as/view?i=100436
http://api.nsgreg.nga.mil/ontology/neo/1-1#LandAerodrome
http://api.nsgreg.nga.mil/ontology/neo/1-1#LandAerodrome
http://api.nsgreg.nga.mil/ontology/neo/1-1#Railway

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

5.4.4 General Encoding of Datatypes

5.4.4.1 Introduction

The datatypes included in the NEO information model fall under four general classes, which are explained in
corresponding following sections:

1. Primitive Datatypes
2. Measure Datatypes
3. Enumerated Types
4. Complex Data Types.®®

As noted in the discussion of OWL (Section 5.3.7), OWL supports selected datatypes using rdf : PlainLiteral
and XML Schema. The NEO content has a larger set of datatypes, as specified in Section 5.2.8.

The non-primitive NEO datatypes are encoded using owl : Class with the appropriate properties. The figure below
depicts the upper level of NEO datatype classes.

DataType

il \ o
T e R T —

pe

‘[‘,

Codelist Enumeration I DatatypeUnion] [DatatypeMeta

Figure 5 — NEO Datatype Hierarchy (Upper-level)3¢

5.4.4.2 PrimitiveDatatype

The primitive datatypes included in the NEO information model are encoded as specified below. The abstract
superclass Number, which serves as the generalization of the Real and Integer datatypes, is not encoded.

e The datatype CharacterString is represented using the rdf: PlainLiteral datatype provided in OWL 2
for the representation of strings optionally with an identified natural language, as specified in the OWL 2
Structural Specification and Functional-Style Syntax: Section 4.3. The rdf: PlainLiteral value may be
either a character string (xsd: String), or an ordered pair consisting of a character string
(xsd:String) and a lower-case language tag (e.g., “en” for English).%”

e The datatype LocalizedCharacterString is represented using the rdf : PlainLiteral datatype provided
in OWL 2 for the representation of strings with the constraint that a language tag identifying the natural
language of the content of the string is required.

o The values of the datatype IANALanguageSubtag, used to identify the language of character
strings, are represented using the two-character, lowercase language abbreviations specified in
BCP 47.

e The datatype LocalizedContinuousString is represented using the rdf : PlainLiteral datatype
provided in OWL 2 for the representation of strings, with the constraint that the string must not contain
spaces (unless encoded by ‘%20’) and with the constraint that a language tag identifying the natural
language of the content of the string is required.

3% The NEO content encodings include all of the allowed specializations of the datatypes defined in the NEO information model.

% Image generated with the OWLViz plug-in to Protégé. Note that the graphical conventions in OWLViz differ from those of UML
notation (specifically, the subclass arrows in OWLViz point towards the subclass, while they point towards the superclass in UML).

87 W3C. rdf:PlainLiteral: A Datatype for RDF Plain Literals. 11 December 2012. Available online at: http://www.w3.0rg/TR/2012/REC-

rdf-plain-literal-20121211/#Definition_of the rdf:PlainLiteral Datatype.

42

http://www.w3.org/TR/2012/REC-rdf-plain-literal-20121211/#Definition_of_the_rdf:PlainLiteral_Datatype
http://www.w3.org/TR/2012/REC-rdf-plain-literal-20121211/#Definition_of_the_rdf:PlainLiteral_Datatype

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

The datatype Boolean is represented using the XML datatype for OWL 2, xsd:boolean, as specified in
the OWL 2 Structural Specification and Functional-Style Syntax.

The datatype IRl is represented using the XML datatype xsd:anyURT, as specified in the OWL 2
Structural Specification and Functional-Style Syntax.

The datatype DateTime is represented using the XML datatype xsd:dateTime as specified in the OWL 2
Structural Specification and Functional-Style Syntax.

The datatype Real is represented using the XML datatype owl : real, as specified in the OWL 2 Structural
Specification and Functional-Style Syntax.

The datatype Decimal is represented using the XML datatype xsd:decimal, as specified in the OWL 2
Structural Specification.

The datatype Integer is represented using the XML datatype xsd: integer, as specified in the OWL 2
Structural Specification and Functional-Style Syntax.

The datatype NonNegativelnteger is represented using the XML datatype xsd:nonNegativeInteger,
as specified in the OWL 2 Structural Specification and Functional-Style Syntax.

43

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table 16 — Encoding Elements for PrimitiveDatatype

R;f NEO Modeling Concept NEO Encoding Element Notes
1 | PrimitiveDatatype N/A Abstract generalization of primitive datatypes used in the
{Abstract} NEO information model.
2 | CharacterString rdf:PlainLiteral W3C rdf:PlainLiteral (11 December 2012)
LocalizedCharacterString rdf:PlainLiteral Adds Language tag (from IANALanguageSubtag).
4 | LocalizedContinuousString | rdf:PlainLiteral Adds Language tag (from IANALanguageSubtag), and
requires that the string does not contain white space
(unless encoded using ‘%20’).
5 | Boolean xsd:boolean XSD Datatypes, 3.3.2
6 IRI xsd:anyURI OWL Functional Syntax, 4.6; XSD Datatypes, 3.3.17
7 | DateTime xsd:dateTime XSD Datatypes, 3.3.7
8 Real owl:real OWL Functional Syntax, 4.1
9 | Decimal xsd:decimal XSD Datatypes, 3.2.3
10 | Integer xsd:integer XSD Datatypes, 3.3.14
11 | NonNegativelnteger xsd:nonNegativeInteger XSD Datatypes, 3.3.20

5.4.4.3 MeasureDatatype

The datatype MeasureDatatype is used to represent a numeric amount (Number) expressed with a unit or scale or using a scalar reference system (Unit of

Measure). MeasureDatatypes have both a measureValue and a measureUnit.

e Value: The abstract datatype Number is the generalization for the concrete datatypes Real, Decimal, Integer, and (a subclass of Integer)
NonNegativelnteger. The abstract superclass Number is not encoded. Each of the concrete primitive datatypes is encoded as specified in Section 5.4.4.2.

e Unit of Measure: The datatype UnitOfMeasure used in the NEO content specifies units defined in ISO 80000 (multi-part) and encoded as IRI references
to entries in the NSGREG Physical Quantities Register. For example: http://api.nsgreg.nga.mil/physical-quantity/length/metre.

MeasureDatatype-valued properties may be included within a ComplexDatatype (see Section 5.4.4.5) that enables measures to be collected together with an
accuracy evaluation or other additional information (for example, whether a measurement of an interval represents an open or a closed interval).

44

http://api.nsgreg.nga.mil/physical-quantity/length/metre

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table 17 — Encoding Elements for MeasureDatatype

Ref NEO Modeling . Cardinality of
4 Concept NEO Encoding Element Element Value Type Notes
1 | MeasureDatatype owl:Class All measure datatypes belong to one of the two
concrete subclasses:
15019103 uom:Measure or
15019103 uom:DirectedMeasure
2 | classIRI rdf:about Exactly one IRI For example:
http://def.isotc211.0rg/is019103/2015/MeasureTyp
es#length
3 | label rdfs:label Exactly one LocalizedContinuousString
4 | name skos:preflabel Exactly one LocalizedCharacterString
5 | alias skos:altLabel Zero or more LocalizedCharacterString
6 | definitionNote skos:definition Exactly one LocalizedCharacterString
7 | sourcelRI rdfs:isDefinedBy Exactly one IRI
8 | measureValue 15019103 uom:Measure. | Exactly one Real (Measure) or Vector
measureValue or (DirectedMeasure)
15019103 uom:Directed
Measure.measureValue
9 | measureUnit 15019103 uom:Measure. | Exactly one IRI The IRI identifies a unit of measure registered in
measureUnit or the Physical Quantities Register of the NSG
15019103 uom:Directed Standards Registry.
Measure.measureUnit

5.4.4.4 EnumeratedType

The datatype EnumeratedType represents sets of domain values (ListedValues) which are the allowed data values of an EntityAttribute. This datatype requires a
complex encoding pattern. Each EnumeratedType is implemented as an OWL 2 class (owl : Class) that is a subclass of SKOS Concept, while an associated
EnumeratedTypeScheme is implemented as a SKOS concept scheme (skos:ConceptScheme). Each ListedValue is represented as an individual SKOS
concept (skos:Concept). The OWL class provides the typing (classification) for the listed values and serves as the range of an EntityAttribute. The SKOS
concept scheme collects the listed values and enables them to be related by generalization relationships (skos :broader).

An enumerated type is either an Enumeration or a Codelist. The distinction is encoded using a Boolean property (neox: valuesComplete) on the associated
EnumeratedTypeScheme (skos : ConceptScheme). The Boolean value TRUE indicates an Enumeration (i.e., a closed, non-extensible set of listed values),
while the Boolean value FALSE indicates a Codelist (i.e., an extensible set of listed values).

The general encoding pattern for EnumeratedType, EnumeratedTypeScheme, and ListedValue is summarized as follows:

e An EnumeratedType is encoded as an owl : Class that may be used as the value type (rdfs: range) of an EntityAttribute.

45

http://def.isotc211.org/iso19103/2015/MeasureTypes#Length
http://def.isotc211.org/iso19103/2015/MeasureTypes#Length

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

An EnumeratedTypeScheme is encoded as a skos: ConceptScheme. The concept scheme supports generalizations between listed values.

The EnumeratedTypeScheme (skos: ConceptScheme) is related (unidirectionally) to the corresponding class (ow1 : Class) representation of the
EnumeratedType, using dct : isFormatOf to encode the schemeOf relationship from the information model.

Each ListedValue is encoded as a skos: Concept thatis an instance of the ow1 : C1lass that encodes the EnumeratedType.
A ListedValue may be related to another ListedValue that has a more general (i.e., broader) meaning, by using skos:broader.

The hasMember association role between an EnumeratedType and a ListedValue is represented by its inverse (‘has member”) in SKOS. This
relationship is encoded using skos: inScheme and is used to link each ListedValue to its EnumeratedTypeScheme (skos:ConceptScheme).

If a ListedValue in an EnumeratedTypeScheme has no broader ListedValue, then the relationship topMemberOf (encoded by skos: topConceptOf)
is also used to relate that ListedValue (skos: Concept) to its EnumeratedTypeScheme (skos:ConceptScheme).

The Boolean-valued attribute valuesComplete (encoded by neox : valuesComplete) is used to distinguish an Enumeration from a Codelist. The
distinction between an Enumeration and a Codelist is represented in the encoding by the value of the Boolean property (neox : valuesComplete) on
the EnumeratedTypeScheme (skos:ConceptScheme). The value TRUE indicates an Enumeration, while the value FALSE indicates a Codelist.

EnumeratedTypes for NEO are specified in either the NEO enumeration namespace or in external namespaces. NEO Enumerations (and their ListedValues) are
encoded in the ‘neo-enum’ namespace (for example http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/AerodromeFacilityOperationalStatusType). Codelists (and
their ListedValues) that may be used as the value type (i.e., range) for a NEO EntityAttribute shall be encoded according to the pattern specified in this section.
These include codelists in the Information Resources (IR) Registry of the NSG Standards Registry. External codelists and listed values are referenced by IRIs from
external namespaces; for example: http://api.nsgreg.nga.mil/codelist/BuildingFeatureFunction/accommodation and http://def.isotc211.0rg/is019115/-
1/2014/CitationAndResponsiblePartylnformation#Cl_Contact.

Table 18 — Encoding Elements for EnumeratedType

Ref NEO Modeling . Cardinality
" Concept NEO Encoding Element of Element Value Type Notes
1 EnumeratedType owl:Class The class representing the EnumeratedType is also
declared to be a subclass of skos:Concept.
2 classIRI rdf:about Exactly one | IRI For example: http://api.nsgreg.nga.mil/ontology/neo-
enum/basel7May/AerodromePhysicalConditionType
label rdfs:label Exactly one | LocalizedContinuousString
4 name skos:preflabel Exactly one | LocalizedCharacterString
alias skos:altLabel Zero or LocalizedCharacterString
more
6 | definitionNote skos:definition Exactly one | LocalizedCharacterString
7 sourcelRlI rdfs:isDefinedBy Exactly one | IRI

An EnumeratedTypeScheme, encoded as specified below, is associated to each EnumeratedType.

46

http://api.nsgreg.nga.mil/ontology/neo-enum/1-1/AerodromeFacilityOperationalStatusType
http://api.nsgreg.nga.mil/codelist/BuildingFeatureFunction/accommodation
http://def.isotc211.org/iso19115/-1/2014/CitationAndResponsiblePartyInformation#CI_Contact
http://def.isotc211.org/iso19115/-1/2014/CitationAndResponsiblePartyInformation#CI_Contact
http://api.nsgreg.nga.mil/ontology/neo-enum/base17May/AerodromePhysicalConditionType
http://api.nsgreg.nga.mil/ontology/neo-enum/base17May/AerodromePhysicalConditionType

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table 19 — Encoding Elements for EnumeratedTypeScheme

Ref . . Cardinality

NEO Modeling Concept NEO Encoding Element of Element Value Type Notes

1 EnumeratedTypeScheme | skos:ConceptScheme The EnumeratedType as a
skos:ConceptScheme.

2 classIRI rdf:about Exactly one IRI For example:
http://api.nsgreg.nga.mil/ontology/neo-
enum/basel17May/AerodromePhysicalConditi
onType ConceptScheme

3 valuesComplete neox:valuesComplete Exactly one Boolean TRUE for Enumeration; FALSE for Codelist
If unspecified, the default is FALSE (i.e.,
open).

4 label rdfs:label Exactly one LocalizedContinuousString

5 name skos:preflabel Exactly one LocalizedCharacterString

6 alias skos:altLabel Zero or more | LocalizedCharacterString

7 definitionNote skos:definition Exactly one LocalizedCharacterString

8 sourcelRI rdfs:isDefinedBy Exactly one IRI Same as the source for the associated
EnumeratedType (owl:Class).

9 Role name: dct:isFormatOf Exactly one EnumeratedType

schemeOf

10 Role name: skos:hasTopConcept Two or more | ListedValue

hasTopMember

11 | Role name: N/A Two or more | ListedValue SKOS has no encoding for this concept,

hasMember which is represented by the inverse,

skos:inScheme.

Allowed data values (ListedValue) are encoded using skos : Concept, as specified in the table below. Each ListedValue will be a direct instance of an
EnumeratedType which is encoded by an owl : Class thatis a subclass of skos :Concept. Each ListedValue will also be a member of the
EnumeratedTypeScheme corresponding to that EnumeratedType.

47

http://api.nsgreg.nga.mil/ontology/neo-enum/base17May/AerodromePhysicalConditionType_ConceptScheme
http://api.nsgreg.nga.mil/ontology/neo-enum/base17May/AerodromePhysicalConditionType_ConceptScheme
http://api.nsgreg.nga.mil/ontology/neo-enum/base17May/AerodromePhysicalConditionType_ConceptScheme

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table 20 — Encoding Elements for ListedValue Datatype

Ref NEO Modeling . Cardinality
4 Concept NEO Encoding Element of Element Value Type Notes
1 | ListedValue skos:Concept The ListedValue will be a direct instance of an
owl:Class thatis a subclass of skos:Concept.
2 | classIRI rdf:about Exactly one IRI For example: http://api.nsgreg.nga.mil/ontology/neo-
enum/basel7May/AerodromePhysicalConditionType/d
amaged
3 | label rdfs:label Exactly one LocalizedContinuousString
4 | name skos:preflabel Exactly one LocalizedCharacterString
5 | alias skos:altLabel Zero or more | LocalizedCharacterString
6 | definitionNote skos:definition Exactly one LocalizedCharacterString
7 | sourcelRlI rdfs:isDefinedBy Exactly one IRI
8 | Role name skos:inScheme Exactly one EnumeratedTypeScheme
memberOf
9 | Role name skos:topConceptOf Exactly one EnumeratedTypeScheme
topMemberOf
10 | Role name skos:broader Zero or one ListedValue For example: the listed value

broaderValue

http://api.nsgreg.nga.mil/codelist/BuildingFeatureFunct
ion/longTermAccommodation has the broader listed
value
http://api.nsgreg.nga.mil/codelist/BuildingFeatureFunct
ion/accommodation

5.4.4.5 Complex Datatypes

A complex datatype is encoded in an identical way to an EntityClass (Section 5.4.3.3) with optional EntityProperty (Section 5.2.6).

A complex datatype has multiple properties, at least one of which provides a principal data value while others may contain additional contextual data (including
metadata) about the principal data value. These multiple related properties together characterize an entity. For example, Elevation with Datum and Accuracy® is a
complex datatype composed of a Real, a Vertical Datum, and an Absolute Vertical Accuracy; the first property specifies a real value for the elevation, while the
second property specifies a vertical reference datum, and the third property specifies the accuracy of the elevation value.

The tabular encoding specifications in this section cover two subtypes of ComplexDatatype that represent common encoding patterns for complex datatypes used
in the NEO content. First, the datatype DatatypeUnion represents a complex datatype consisting of a set of properties which are alternatives. Only one of the
constituent properties is evaluated for any data instance. A common pattern of DatatypeUnion in the NEO content contains alternative properties that either

provide the principal value(s) for a domain attribute or else a reason that the principal data value is absent.

3% NAS Elevation with Datum and Accuracy (http:/nsgreg.nga.mil/as/view?i=100934).

48

http://api.nsgreg.nga.mil/ontology/neo-enum/base17May/AerodromePhysicalConditionType/damaged
http://api.nsgreg.nga.mil/ontology/neo-enum/base17May/AerodromePhysicalConditionType/damaged
http://api.nsgreg.nga.mil/ontology/neo-enum/base17May/AerodromePhysicalConditionType/damaged
http://api.nsgreg.nga.mil/codelist/BuildingFeatureFunction/longTermAccommodation
http://api.nsgreg.nga.mil/codelist/BuildingFeatureFunction/longTermAccommodation
http://api.nsgreg.nga.mil/codelist/BuildingFeatureFunction/accommodation
http://api.nsgreg.nga.mil/codelist/BuildingFeatureFunction/accommodation

Table 21 — Encoding Elements for DatatypeUnion

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Ref NEO Modeling . Cardinality
4 Concept NEO Encoding Element of Element Value Type Notes
DatatypeUnion owl:Class
2 | classIRlI rdf:about Exactly one IRI For example: http://api.nsgreg.nga.mil/ontology/neo-
ent/basel7May#MaritimeBottomCharacterSedimentC
olourCodeReason
3 | label rdfs:label Exactly one LocalizedContinuousString
4 | name skos:preflabel Exactly one LocalizedCharacterString
5 | alias skos:altLabel Zero or more | LocalizedCharacterString
6 | definitionNote skos:definition Exactly one LocalizedCharacterString
7 | sourcelRI rdfs:isDefinedBy Exactly one IRI
8 | Role name XXX .value or Exactly one [see Notes] The specific datatype (“XXX”) for the value(s) property
value or values XXX .values depends upon the particular DatatypeUnion. For
example: http://api.nsgreg.nga.mil/ontology/neo-
ent/basel7May#MaritimeBottomCharacterSedimentC
olourCodeReason.value. The Value Type for value(s)
also depends on the particular DatatypeUnion; for
example:
http://api.nsgreg.nga.mil/codelist/MaritimeBottomSedi
mentColour.
9 | Role name XXX .reason Exactly one VoidValueReason or The specific datatype (“XXX”) for the reason property
reason VoidNumericValueReason depends upon the particular DatatypeUnion. For

example: http://api.nsgreg.nga.mil/ontology/neo-
ent/basel7May#MaritimeBottomCharacterSedimentC
olourCodeReason.reason. The reason Value Type is
from a standardized codelist (either
http://api.nsgreg.nga.mil/codelist/VoidValueReason or
http://api.nsgreg.nga.mil/codelist/VoidNumericValueRe
ason).

Second, the datatype DatatypeMeta represents a datatype having at least one property that provides a principal data value, accompanied (optionally) by properties
providing metadata including, for example, restrictions on use, temporal extent, or provenance of the principal data value

49

http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#MaritimeBottomCharacterSedimentColourCodeReason
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#MaritimeBottomCharacterSedimentColourCodeReason
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#MaritimeBottomCharacterSedimentColourCodeReason
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#MaritimeBottomCharacterSedimentColourCodeReason.value
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#MaritimeBottomCharacterSedimentColourCodeReason.value
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#MaritimeBottomCharacterSedimentColourCodeReason.value
http://api.nsgreg.nga.mil/codelist/MaritimeBottomSedimentColour
http://api.nsgreg.nga.mil/codelist/MaritimeBottomSedimentColour
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#MaritimeBottomCharacterSedimentColourCodeReason.reason
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#MaritimeBottomCharacterSedimentColourCodeReason.reason
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#MaritimeBottomCharacterSedimentColourCodeReason.reason
http://api.nsgreg.nga.mil/codelist/VoidValueReason
http://api.nsgreg.nga.mil/codelist/VoidNumericValueReason
http://api.nsgreg.nga.mil/codelist/VoidNumericValueReason

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Table 22 — Encoding Elements for DatatypeMeta

Ref . . Cardinality
4 NEO Modeling Concept NEO Encoding Element of Element Value Type Notes
DatatypeMeta owl:Class
2 | classIRI rdf:about Exactly one IRI For example:
http://api.nsgreg.nga.mil/ontology/neo-
ent/basel7May#BuildingFeatureFunction
CodeMeta
3 | label rdfs:label Exactly one LocalizedContinuousString
4 | name skos:preflabel Exactly one LocalizedCharacterString
5 | alias skos:altLabel Zero or more | LocalizedCharacterString
6 | definitionNote skos:definition Exactly one LocalizedCharacterString
7 | sourcelRI rdfs:isDefinedBy Exactly one IRI
8 | Role name [see Notes] Zero or more | [see Notes] Context-specific: Zero or more instances
[see Notes] of EntityProperty, depending upon the
specific subclass of DatatypeMeta.
9 | Role name DatatypeMeta.metada | Zero or one PropertyMetadata
DatatypeMeta.metadata ta
10 | Role name DatatypeMeta.proper | Zero orone Timelntervallnfo
DatatypeMeta.propertyValAppli | tyValApplicableTime
cableTime
11 | Role name DatatypeMeta.resour | Zero orone ResourceConstraints
DatatypeMeta.resourceConstra | ceConstraints
ints
12 | Role name DatatypeMeta.legalC | Zero or one LegalConstraints

DatatypeMeta.legalConstraints

onstraints

There are other kinds of complex datatypes in the NEO content; however, these two are the most common. Annex D (“Inspecting NEO Content”) presents an
example of a DatatypeMeta complex datatype.

50

http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#BuildingFeatureFunctionCodeMeta
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#BuildingFeatureFunctionCodeMeta
http://api.nsgreg.nga.mil/ontology/neo-ent/base17May#BuildingFeatureFunctionCodeMeta

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

5.4.5 Technology-specific NEO Encodings

5.45.1 Introduction

The NEO Standard defines two technology-specific encodings of the NEO content, conformant with the information
model of the NEO Standard:

e RDF/XML encoding — RDF/XML is the primary concrete exchange syntax for OWL 2. All OWL 2 tools are
required to support the OWL 2 RDF/XML syntax (see Section 2.1 of the OWL 2 Conformance document3?).
NEO conformance requires support for the RDF/XML encoding of NEO.

e N-Triples — A line-based, plain-text format for encoding an RDF graph.*°

Each encoding of NEO content provides a machine-interpretable OWL 2 representation of the entity-class
generalization hierarchy for use in storing and exchange of geospatial information in Semantic Web applications. The
NEO content in RDF/XML may be used by Semantic Web tools to enhance search or retrieval of instance data.

Data instance files in N-Triples encoding may be linked to related content in the N-Triples NEO encoding to provide
semantics to that data when exchanging it among information systems or making it available in Linked Data stores.

The publication of the NEO content encodings and how to obtain them is described in Section 6.3.

5.4.5.2 RDF/XML Encoding

The NEO Standard specifies a technology-specific encoding for the NEO information model using the mandatory
RDF/XML encoding of OWL 2.

¢ Inthe RDF/XML encoding, character strings in the ‘definitionNote’ (skos:definition) are encoded
using the XML CDATA wrapper.*!

¢ Inthe RDF/XML encoding, where language tags are required or permitted, they shall be provided as the
value of an RDF/XML annotation element (xm1 : 1ang) for the string-valued property, in order to indicate
that the content is in English (language code “en”).

e In OWL encoded in RDF/XML, assertions about disjoint sibling subclasses are expressed using the class
expression owl:A11DisjointClasses with a list of the disjoint classes. The encoding specified in
Section 5.4.3.4 is used for all collections of disjoint classes, whether there are two or more disjoint classes.

3% OWL 2 Web Ontology Language Conformance (Second Edition). W3C Recommendation. 11 December 2012. Michael Smith, et
al., eds. Published online at: http://www.w3.0rg/TR/2012/REC-owl2-conformance-20121211/.

4 RDF 1.1. N-Triples. W3C Recommendation. 25 February 2014. David Beckett. Published online at: http://www.w3.0org/TR/n-
triples/.

41 In XML the CDATA wrapper is used to indicate to parsers that the enclosed content should not be further interpreted; this allows
applications to use characters in data exchange that would otherwise be misinterpreted as element or entity markup.

51

http://www.w3.org/TR/2012/REC-owl2-conformance-20121211/
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/n-triples/

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

<owl:Class rdf:about="http://api.nsgreg.nga.mil/ontology/neo—-ent/1-3#Aerodrome">

<rdfs:subClassOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-ent/1-
3#FeatureEntity"/>

<1s019150-2:isAbstract rdf:datatype=http://www.w3.0rg/2001/XMLSchema#boolean>true</is019150-
2:isAbstract>

<skos:prefLabel xml:lang="en">Aerodrome</skos:prefLabel>

<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=103150"/>

<skos:definition xml:lang="en">![CDATA[Definition: A defined area on land or water (including
any buildings, installations and equipment) intended to be used either wholly or in part for the
arrival, departure and surface movement of aircraft. Description: [None
Specified]]]</skos:definition>

<rdfs:label xml:lang="en">Aerodrome</rdfs:label>

</owl:Class>

<owl:AllDisjointClasses>
<owl:members rdf:parseType="Collection">
<owl:Class rdf:about="http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#Heliport"/>
<owl:Class rdf:about="http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#LandAerodrome"/>
<owl:Class rdf:about="http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#WaterAerodrome"/>
</owl :members>
</owl:AllDisjointClasses>

Figure 6 — OWL2 RDF/XML Encoding: Entity Class Aerodrome and its Disjoint Subclasses

52

http://www.w3.org/2001/XMLSchema#boolean

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

<owl:Class rdf:about="http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#Heliport">
<rdfs:subClassOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#Aerodrome"/>
<skos:prefLabel xml:lang="en">Heliport</skos:preflLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=100442"/>
<skos:definition xml:lang="en">![CDATA[Definition: An aerodrome intended to be used for the arrival, landing, takeoff or departure
of vertical takeoff and landing aircraft/helicopters. Description: [None Specified]]]</skos:definition>
<rdfs:label xml:lang="en">Heliport</rdfs:label>
</owl:Class>

<owl:Class rdf:about="http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#LandAerodrome">
<rdfs:subClassOf>
<owl:Class rdf:about="http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#Aerodrome"/>
</rdfs:subClassOf>
<skos:altLabel xml:lang="en">Airfield</skos:altLabel>
<skos:altLabel xml:lang="en">Airport</skos:altLabel>
<skos:prefLabel xml:lang="en">Land Aerodrome</skos:preflLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=100436"/>
<skos:definition xml:lang="en">![CDATA[Definition: An aerodrome on land intended to be used either wholly or in part for the
arrival, departure and surface movement of aircraft. Description: [None Specified]]]</skos:definition>
<rdfs:label xml:lang="en">LandAerodrome</rdfs:label>
</owl:Class>

<owl:Class rdf:about="http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#WaterAerodrome">
<rdfs:subClassOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#Aerodrome"/>
<skos:altLabel xml:lang="en">Sea Plane Base</skos:altLabel>
<skos:preflLabel xml:lang="en">Water Aerodrome</skos:preflLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=100452"/>
<skos:definition xml:lang="en">![CDATA[Definition: An aerodrome intended to be used either wholly or in part for the arrival,
departure and surface movement of aircraft on water. Description: [None Specified]]]</skos:definition>
<rdfs:label xml:lang="en">WaterAerodrome</rdfs:label>
</owl:Class>

Figure 7 — OWL 2 RDF/XML Encoding: Subclasses of Aerodrome

53

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

5.4.5.3 N-Triples Encoding

The NEO Standard specifies a technology-specific encoding for the NEO information model using N-Triples. The
W3C Recommendation RDF 1.1 N-Triples specifies a line-based, plain text format for encoding an RDF graph with
each triple presented on a separate line followed by a period. N-Triples files do not contain special parsing
instructions.

The encoding of NEO content in N-Triples closely follows the general encoding for the NEO information model, with
the following technology-specific encodings applied:

¢ Namespace abbreviations are not used in the N-Triples encoding; instead, fully-specified IRIs are used. For
example: http://www.w3.0rg/2002/07/owl#Al1lDisjointClasses, rather than
owl:AllDisjointClasses. IRIs are text only; they are not hyperlinked.

¢ Inthe N-Triples encoding, the first component (subject) of the triple corresponds to the value of the
rdf:about in the RDF/XML encoding. (rdf : about is not used.)

e Inthe N-Triples encoding, the XML CDATA wrapper is not used (e.g., with the NEO modeling element
‘definitionNote’).

¢ Inthe NEO N-Triples encoding, where language tags are required or permitted, they shall be appended to
the character string by using the ‘@’ symbol, in order to indicate that their content is in English (language
code “en”).

e Inthe N-Triples encoding, assertions about disjoint sibling subclasses are expressed using the class
expression http://www.w3.0rg/2002/07/owl#Al11DisjointClasses and a list of the disjoint
classes. This encoding is used for all collections of disjoint classes, whether there are two or more disjoint
classes. See the example in Figure 9, below

e Theencodingof owl:AllDisjointClasses in OWL N-Triples results in the use of blank nodes to
represent: (1) an instance of owl :A11DisjointClasses, and (2) the declarations of each member of
the list of the disjoint classes. A Skolemized IRl is substituted as the identifier for the list of disjoint classes.

A blank node is a node in an RDF graph that has no IRI identifier. Blank nodes have labels beginning with an
underscore character followed by a colon (“_:"). These are not IRIs and cannot be referenced outside of the local
graph.

For some applications, it is valuable to assign a unique identifier to the owl :A11DisjointClasses construct.
This is accomplished through a process termed “Skolemization”. In order to reference a blank node, the label for that
node is replaced with a new, skolemized, globally unique IRI corresponding to the blank node. In the NEO content,
Skolemized IRIs are character strings beginning with the URI base 'http://api.nsgreg.nga.mil/.well-known/genid/',
followed by a Universally Unique Identifier (UUID). Other blank nodes used to represent the members of the disjoint-
classes construct are not skolemized. See Figure 9 for an example of N-Triples encoding of disjoint subclasses using
blank nodes and Skolemized IRIs.

54

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

<http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#LandAerodrome> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.0rg/2002/07/owl#Class>

<http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#LandAerodrome> <http://www.w3.0rg/2000/01/rdf-schemafsubClassOf>
<http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#Aerodrome>
<http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#LandAerodrome> <http://www.w3.0rg/2004/02/skos/core#altLabel>
"Airfield"@en

<http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#LandAerodrome> <http://www.w3.0rg/2004/02/skos/core#altLabel>
"Airport"@en

<http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#LandAerodrome> <http://www.w3.0rg/2004/02/skos/corefprefLabel> "Land
Aerodrome"(@en

<http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#LandAerodrome> <http://www.w3.0rg/2000/01/rdf-schema#isDefinedBy>
<http://nsgreg.nga.mil/as/view?i=100436>

<http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#LandAerodrome> <http://www.w3.0rg/2004/02/skos/coref#fdefinition>
"Definition: An aerodrome on land intended to be used either wholly or in part for the arrival, departure and surface
movement of aircraft. Description: [None Specified]"@en
<http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#LandAerodrome> <http://www.w3.0rg/2000/01/rdf-schema#label>
"LandAerodrome"@en

Figure 8 — N-Triples Encoding: Entity Class LandAerodrome

<http://api.nsgreg.nga.mil/.well-known/genid/2F0369E712864B0F9A76B91C650E619D> <http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#type> <http://www.w3.0rg/2002/07/owl#AllDisjointClasses>

<http://api.nsgreg.nga.mil/.well-known/genid/2F0369E712864B0F9A76B91C650E619D>
<http://www.w3.0rg/2002/07/owl#members> :GCSR7TAB2D77100804C3EALF2962AEC5CF4F4

__:GCSR7AB2D77100804C3EALF2962AEC5CF4F4 <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#first>
<http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#Heliport>
__:GCSR7AB2D77100804C3EA1F2962AEC5CF4F4 <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#rest>
~ :GCSRO97EDAE18891C41F59D005997BD82FDOA

__:GCSRY7EDAE18891C41F59D005997BD82FD9A <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#first>
<http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#LandAerodrome>
__:GCSRY7EDAE18891C41F59D005997BD82FD9A <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#rest>
__:GCSRO5E1A808C50F4766A539DA81B44ED065

__:GCSRO5E1A808C50F4766A539DA81B44ED065 <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#first>
<http://api.nsgreg.nga.mil/ontology/neo-ent/1-3#WaterAerodrome>

__:GCSRO5E1A808C50F4766A539DA81B44ED065 <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#rest>
<http://www.w3.0rg/1999/02/22-rdf-syntax-nil>

Figure 9 — N-Triples Encoding: Disjoint Subclasses of Aerodrome

55

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

6 Governance and Publication

6.1 Introduction

The NEO Standard and its associated NEO content shall be governed and published in accordance with the general
process established by the NGA as a Standards Development Organization (SDO) under the Functional Manager for
GEOINT. These processes are currently executed by the Geospatial Intelligence (GEOINT) Content Standards Board
(GCSB). The organization of the GCSB is described in the GCSB Operations Guide (available online).*?

6.2 Governance

The management of this NEO Standard conforms to the governance process established by NGA as an SDO under
the Functional Manager for GEOINT.

The Geospatial Intelligence (GEOINT) Content Standards Board (GCSB) is the community forum responsible for
providing governance, community coordination, prioritization of content development, and notifications for the set of
NGA-developed GEOINT Data Standards that define a common method for specifying and encoding geospatial
intelligence and related geospatial information in the NSG. Changes to the NEO Standard and its associated NEO
content shall conform to the current governance process as described in the GCSB Operations Guide.

The NEO Standard and its associated NEO content evolve in response to NSG community requirements.*3 The
GCSB is responsible for approving changes, distributing change notifications, and publishing the NEO Standard and
NEO content for use by the U.S. Department of Defense (DoD), U.S. Intelligence Community (IC), and U.S. civil
federal agencies. The NEO Standard and technical artifacts containing NEO content are published in the NSG-unique
Standards Register of the NSG Standards Registry (NSGREG). The NEO content is also accessible through the
REST API component of the NSGREG.

6.3 Publication

6.3.1 Introduction

The process for the publication of the NEO Standard and associated NEO content is described in Section 2.3.5
(Implementation of Changes) of the GCSB Operations Guide. The NEO Standard is published in the NSG-unique
Standards Register of the NSGREG, at http://nsgreg.nga.mil/doc/view?i=2615.

The managed NEO content consists of:

1) Technical artifacts: RDF/XML and N-Triples encodings published in the NSGREG
(http://nsgreg.nga.mil/doc/view?i=4380); and

2) Online resources retrievable through the REST API component of the NSG Standards Registry:

o NEO entities: http://api.nsgreg.nga.mil/ontology/neo-ent

o NEO enumerations: http://api.nsgreg.nga.mil/ontology/neo-enum

Non-versioned IRIs return the latest content baselines. Specific baselines may be requested using versioned IRIs.

All official publications of NEO content shall conform to the information model specified in Section 5.2 of this NEO
Standard. All encodings shall conform to the OWL 2 representation and encoding as specified in Sections 5.2.8.20
and 5.4. The publication of NEO content is described in the following sections.

6.3.2 Publication of NEO Content as a Technical Artifact

The NEO technical artifacts are registered files containing NEO content baselines in OWL 2, encoded as specified in
Section 5.4 of this standard. Content baselines are designated by version numbers (e.g., '1-3"). The first integer in the
version number indicates the edition of the Standard on which the content baseline is based, while the second integer
indicates the specific baseline in a possible sequence of updated content baselines.

42 Available online from the NSG Standards Registry, at http://nsgreg.nga.mil/doc/view?i=4284.
43 The NEO content is derived from the content of the NSG Application Schema (NAS) using the rule-based approach of ISO 19150-
2 as implemented in the ShapeChange application.

56

http://nsgreg.nga.mil/doc/view?i=2615
http://nsgreg.nga.mil/doc/view?i=4380
http://api.nsgreg.nga.mil/ontology/neo-ent
http://api.nsgreg.nga.mil/ontology/neo-enum
http://nsgreg.nga.mil/doc/view?i=4284

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

For each content baseline of the NEO, two pairs of technical artifacts are published with the OWL 2 encoding of the
NEO content baseline; one pair in OWL 2 RDF/XML format and one pair in OWL 2 N-Triples format. Each pair of files
contains the complete NEO content as of the official date of the baseline; a pair includes one file that encodes the
content of the versioned “neo-ent” namespace (NEO entities) and one file that encodes the content of the “neo-enum”
namespace (NEO enumerations). The two pairs of encoding files are published in the NSG-unique Standards
Register of the NSG Standards Registry. A list of content baselines with links to their encoded content files is
provided at http://nsgreg.nga.mil/neo.

These encoding files are designed to be machine-processable semantic resources. Their content may be directly
examined in a text editor; however, an ontology application capable of displaying OWL 2 with a graphical user
interface may be used to inspect the NEO content in a more human-friendly manner. A sample use of an ontology
viewer for that purpose is presented in Annex D (informative).

6.3.3 Publication of NEO Content as REST APl-accessible Resources

The NEO content is also available through the REST API component of the NSG Standards Registry. Files containing
the latest NEO content baseline are retrievable from the following non-versioned IRlIs:

e http://api.nsgreg.nga.mil/ontology/neo-ent

e http://api.nsgreg.nga.mil/ontology/neo-enum

The NEO landing page (http://nsgreg.nga.mil/neo) publishes a table listing each NEO content baseline with its
versioned IRI. The versioned IRI (see Section 5.4.2.4) shall be used for authoritative citation of the NEO content in
information exchange and data sharing. The versioned IRI shall also be used for official specification of the NEO
content baseline version to be used in systems development and acquisition.

HTTP content negotiation based on the Accept request-header field may be used to specify the media type as
RDF/XML (‘application/rdf+xml') or N-Triples format (‘application/n-triples'’) when resource retrieval is requested.** A
request that does not specify a media type retrieves files in the default format (RDF/XML).

In addition, each NEO enumeration and listed value is also published separately as a resource accessible through
the REST API component of the NSG Standards Registry. These resources are provided to support reference and re-
use by Web-enabled applications in specifying data values.*

Each resource representing an EnumeratedType (Section 5.4.4)shall include the following components based on the
NEO information model:

e the OWL class representing the enumerated type;

e the SKOS Concept Scheme representing the enumerated type;

e SKOS Concepts representing all the listed values belonging to the enumerated type;
o a Different Terms assertion declaring the distinctness of all the included listed values.

Each SKOS Concept Scheme representing an EnumeratedType shall also be published as a REST APIl-accessible
resource including the member listed values as SKOS Concepts, with the appropriate Different Terms assertion.

Each resource for a listed value shall be published as a REST API-accessible resource including only the
documentation and properties for the SKOS Concept representing the listed value.

All separately published resources for NEO components shall include a dct : 1sPartOf assertion indicating that
the resource represents partial content of the “neo-enum” namespace.

The external codelists referenced by NEO from the Information Resources (IR) Registry of the NSG Standards
Registry follow the same pattern (with a different URI base) and return resources structured in the same way. The
URI base for IR codelists referenced by NEO is: http://api.nsgreq.nga.mil/codelist.

Sample contents of REST APIl-accessible resource files with encodings for the enumeration class
ApronAccessibilityStatusType, its associated concept scheme (ApronAccessibilityStatusType_ConceptScheme), and
two of its listed values (a top concept and a subordinate concept) are presented in the figures below.

4 For example, the request for the latest encoding of the ‘neo-ent’ file in N-Triples format is: http://api.nsgreg.nga.mil/ontology/neo-
ent?accept=application/n-triples.

45 Other types of ontology concepts are not offered as REST API-accessible resources and should be retrieved with the 'neo-ent’
and 'neo-enum’ baseline requests.

57

http://api.nsgreg.nga.mil/ontology/neo-ent
http://api.nsgreg.nga.mil/ontology/neo-enum
http://nsgreg.nga.mil/neo
http://api.nsgreg.nga.mil/codelist
http://api.nsgreg.nga.mil/ontology/neo-ent?accept=application/n-triples
http://api.nsgreg.nga.mil/ontology/neo-ent?accept=application/n-triples

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

<rdf:RDF
xmins:dct="http://purl.org/dc/terms/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlins:owl="http://www.w3.0rg/2002/07/owl#"
xmins:skos="http://www.w3.0rg/2004/02/skos/core#"
xmins:e="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3#"
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema#">
<owl:Class rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType">
<owl:oneOf rdf:parseType="Collection">
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType/closed">
<skos:topConceptOf>
<skos:ConceptScheme rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme">
<skos:prefLabel xml:lang="en">Apron Accessibility Status Type - Concept Scheme</skos:prefLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=106468"/>
<skos:definition xml:lang="en">&It;![CDATA[Definition: A coded domain value denoting the accessibility status type of an apron. Description: [None
Specified]]]></skos:definition>
<rdfs:label xml:lang="en">ApronAccessibilityStatusType_ConceptScheme</rdfs:label>
<dct:isFormatOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type"/>
<dct:isPartOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3"/>
</skos:ConceptScheme>
</skos:topConceptOf>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:prefLabel xml:lang="en">Closed (Apron Accessibility Status Type)</skos:prefLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116678"/>
<skos:definition xml:lang="en"><![CDATA[Definition: Access is officially prohibited. Description: May be covered and/or blocked by a physical
barrier.]]></skos:definition>
<rdfs:label xml:lang="en">closed</rdfs:label>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/limited">
<skos:topConceptOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:prefLabel xml:lang="en">Limited (Apron Accessibility Status Type)</skos:prefLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116677"/>
<skos:definition xml:lang="en"><!|[CDATA[Definition: A limitation on access, but not function, has been imposed. Description: Not necessarily enforced
by a physical barrier.]]></skos:definition>
<rdfs:label xml:lang="en">limited</rdfs:label>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/locked">
<skos:topConceptOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:prefLabel xml:lang="en">Locked (Apron Accessibility Status Type)</skos:prefLabel>

58

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116672"/>
<skos:definition xml:lang="en"><!|[CDATA[Definition: Access is prevented by a physical barrier, requiring special means to pass (for example: a key).
Description: [None Specified]]1></skos:definition>
<rdfs:label xml:lang="en">locked</rdfs:label>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/lockedClosed">
<skos:broader rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType/locked"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:prefLabel xml:lang="en">Locked Closed (Apron Accessibility Status Type)</skos:prefLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116674"/>
<skos:definition xml:lang="en"><![CDATA[Definition: Access is officially prohibited and is restricted by a physical barrier, requiring special means to
pass (for example: a key). Description: [None Specified]]]></skos:definition>
<rdfs:label xml:lang="en">lockedClosed</rdfs:label>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType/lockedOpen">
<skos:broader rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/locked"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:prefLabel xml:lang="en">Locked Open (Apron Accessibility Status Type)</skos:prefLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116675"/>
<skos:definition xml:lang="en">&It;\[CDATA[Definition: Access is officially allowed although restricted by a physical barrier that is currently open, requiring
special means to close and prevent future passage (for example: a key). Description: [None Specified]]]></skos:definition>
<rdfs:label xml:lang="en">lockedOpen</rdfs:label>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/open™>
<skos:topConceptOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:prefLabel xml:lang="en">0pen (Apron Accessibility Status Type)</skos:prefLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116673"/>
<skos:definition xml:lang="en"><|[CDATA[Definition: Access is officially allowed. Description: May be covered and/or blocked by a physical barrier that
is temporarily passable.]]></skos:definition>
<rdfs:label xml:lang="en">open</rdfs:label>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/restricted">
<skos:topConceptOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:prefLabel xml:lang="en">Restricted (Apron Accessibility Status Type)</skos:prefLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116676"/>
<skos:definition xml:lang="en"><|[CDATA[Definition: Access is officially allowed although a limitation on function has been imposed. Description: Not
necessarily enforced by a physical barrier.]]></skos:definition>
<rdfs:label xml:lang="en">restricted</rdfs:label>
</e:ApronAccessibilityStatusType>
</owl:oneOf>
<rdfs:subClassOf rdf:resource="http://www.w3.0rg/2004/02/skos/core#Concept"/>
<skos:prefLabel xml:lang="en">Apron Accessibility Status Type</skos:prefLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=106468"/>

59

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

<skos:definition xml:lang="en"><|[CDATA[Definition: A coded domain value denoting the accessibility status type of an apron. Description: [None
Specified]]]></skos:definition>
<rdfs:label xml:lang="en">ApronAccessibilityStatusType</rdfs:label>
<dct:isPartOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3"/>
</owl:Class>
<owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection">
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType/closed"/>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/limited"/>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType/locked"/>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/lockedClosed"/>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/lockedOpen"/>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/open"/>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/restricted"/>
</owl:distinctMembers>
</owl:AlIDifferent>
</rdf:RDF>

Figure 10 — Resource Representation for NEO Enumeration ApronAccessibilityStatusType

<rdf:RDF
xmlins:dct="http://purl.org/dc/terms/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:owl="http://www.w3.0rg/2002/07/owl#"
xmlins:skos="http://www.w3.0rg/2004/02/skos/core#"
xmlns:e="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3#"
xmlins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema#">
<skos:ConceptScheme rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme">
<skos:prefLabel xml:lang="en">Apron Accessibility Status Type - Concept Scheme</skos:prefLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=106468"/>
<skos:definition xml:lang="en">&It;/[CDATA[Definition: A coded domain value denoting the accessibility status type of an apron. Description: [None
Specified]]]></skos:definition>
<rdfs:label xml:lang="en">ApronAccessibilityStatusType_ConceptScheme</rdfs:label>
<dct:isFormatOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType"/>
<dct:isPartOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3"/>
</skos:ConceptScheme>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType/closed">
<skos:topConceptOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType/limited">
<skos:topConceptOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>

60

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/locked">
<skos:topConceptOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType/lockedClosed">
<skos:broader rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type_ConceptScheme/locked"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/lockedOpen">
<skos:broader rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme/locked"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/open">
<skos:topConceptOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
</e:ApronAccessibilityStatusType>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/restricted">
<skos:topConceptOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
</e:ApronAccessibilityStatusType>
<owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection">
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/closed"/>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/limited"/>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/locked"/>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/lockedClosed"/>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/lockedOpen"/>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType/open"/>
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/restricted"/>
</owl:distinctMembers>
</owl:AllDifferent>
</rdf:RDF>

Figure 11 — Resource Representation for NEO Enumeration ApronAccessibilityStatusType_ConceptScheme

61

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

<rdf:RDF
xmins:dct="http://purl.org/dc/terms/”
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlins:owl="http://www.w3.0rg/2002/07/owl#"
xmins:skos="http://www.w3.0rg/2004/02/skos/core#"
xmins:e="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3#"
xmins:rdfs="http://mww.w3.0rg/2000/01/rdf-schema#"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema#">
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatus Type/locked">
<skos:topConceptOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:prefLabel xml:lang="en">Locked (Apron Accessibility Status Type)</skos:prefLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116672"/>
<skos:definition xml:lang="en">&It;![CDATA[Definition: Access is prevented by a physical barrier, requiring special means to pass (for example: a key).]]
). Description: [None Specified]]]></skos:definition>
<rdfs:label xml:lang="en">locked</rdfs:label>
<dct:isPartOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3"/>
</e:ApronAccessibilityStatusType>
</rdf:RDF>

Figure 12 — Resource Representation for NEO Listed Value ApronAccessibilityStatusType/locked

<rdf:RDF
xmlins:dct="http://purl.org/dc/terms/"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:owl="http://www.w3.0rg/2002/07/owl#"
xmlins:skos="http://www.w3.0rg/2004/02/skos/core#"
xmlns:e="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3#"
xmlins:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema#">
<e:ApronAccessibilityStatusType rdf:about="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType/lockedOpen">
<skos:broader rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType/locked"/>
<skos:inScheme rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3/ApronAccessibilityStatusType_ConceptScheme"/>
<skos:prefLabel xml:lang="en">Locked Open (Apron Accessibility Status Type)</skos:prefLabel>
<rdfs:isDefinedBy rdf:resource="http://nsgreg.nga.mil/as/view?i=116675"/>
<skos:definition xml:lang="en"><|[CDATA[Definition: Access is officially allowed although restricted by a physical barrier that is currently open, requiring
special means to close and prevent future passage (for example: a key). Description: [None Specified]]]></skos:definition>
<rdfs:label xml:lang="en">lockedOpen</rdfs:label>
<dct:isPartOf rdf:resource="http://api.nsgreg.nga.mil/ontology/neo-enum/1-3"/>
</e:ApronAccessibilityStatusType>
</rdf:RDF>

Figure 13 — Resource Representation for NEO Listed Value ApronAccessibilityStatusType/lockedOpen

62

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Annex A — Conformance
(Normative)

A.1 Introduction

Conformance is the fulfilment of specified requirements.*¢ Conformance to the NSG Enterprise Ontology (NEO)
(including the NEO Standard and associated NEO content) shall be determined based on the tests specified in this
Annex. Any product claiming conformance to the NEO shall pass all the requirements specified in the abstract test
suite in Section A.2.

A general explanation of the approach to conformance testing is presented in this section, including relevant
terminology. The conformance testing framework specified in Section A.2 is based on ISO 19105:2000 Geographic
information — Conformance and testing. The definition of an abstract test suite for conformance testing appears in
ISO 19105, together with an explanation of the testing framework. The format for conformance clauses is specified in
ISO 19105, Annex A.

A.1.1 Terms and Definitions

A special terminology is used to describe the conformance testing framework. Terms and definitions*” specific to this
annex are presented in Table 23. Terms that are defined in ISO 19105:2000 have a number in parentheses referring
to the clause of that standard in which the term is defined.

Table 23 — Terms and Definitions for Conformance Testing

Term Definition

abstract test case A generalized test for a particular requirement. (3.1)

ATC . . .
() NOTE: An abstract test case is a formal basis for deriving executable test cases. One or

more test purposes are encapsulated in the abstract test case. An abstract test case is
independent of both the implementation and the values. It should be complete in the sense
that it is sufficient to enable a test verdict to be assigned unambiguously to each potentially
observable test outcome (i.e., sequence of test events).

abstract test module A set of related abstract test cases. (3.3)

ATM . . .

() NOTE: Abstract test modules may be nested in a hierarchical way.

abstract test suite An abstract test module specifying all the requirements to be satisfied for conformance.

(ATS) (3.4)

basic test An initial capability test intended to identify clear cases of non-conformance. (3.6)
NOTE: Basic tests may be used to determine whether to conduct further tests.

capability test A test designed to determine whether an implementation under test conforms to a
particular characteristic of a standard as described in the test purpose. (3.7)
NOTE: Capability tests check that the capabilities claimed in an implementation
conformance statement (ICS) are consistent with the observable capabilities of the
implementation under test.

conformance The fulfilment of specified requirements. (3.8)

NOTE: Conformance may be claimed for any product, i.e., data or software or services or
for specifications including any profile or functional standard.

conformance testing The testing of a product to determine the extent to which the product is a conforming
implementation. (3.11)

46 1SO 19105:2000 Geographic information — Conformance and testing.
47 In the definitions in Table 23, a term is styled in bold when the meaning of that term is specified elsewhere in the table.

63

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

contains Includes a representation of the content of the ontology.

NOTE: A product may contain the NEO content either directly (for example, by importing
the RDF/XML encoding of the NEO content), or by reference (for example, using the IRI of
NEO components).

implementation A realization of a specification. (3.18)

NOTEL: In the context of the ISO geographic information standards, this includes
specifications of geographic information services and datasets. (3.18)

NOTE2: An implementation under test (IUT) is a product being evaluated (e.g., by
conformance testing or performance testing) according to identified criteria. (3.24)

implementation A statement of the options which have been implemented. (3.19)
conformance

statement (ICS) NOTE: This will allow the implementation to be tested for conformance against the

relevant requirements, and against those requirements only. This statement shall contain
only options within the framework of requirements specified in the relevant geographic
information standards.

product Data or software or a service. (3.18 NOTE)

NOTE: A candidate product is a product submitted for conformance testing.

verdict The result of a test. (6.4.4)

NOTE: The value of a test verdict is one of: pass, fail, or inconclusive. Verdict criteria are
specified by an abstract test case.

A.1.2 Conformance Testing Methodology
Conformance testing for the NEO is specified by this abstract test suite (ATS).

An ATS comprises all the abstract test cases needed to produce an overall verdict about the conformance of a
candidate product being considered as an implementation under test (IUT).*® Abstract test cases may be collected in
a set of related tests called an abstract test module. Abstract test modules may be nested. An abstract test suite
includes test modules and other test cases arranged in a hierarchy of conformance tests.

Each abstract test case is designed to test a candidate product for conformance to a specific requirement. A test case
has several components:

a) Atest-case identifier;

b) A stated test purpose that is a precise description of the test objective and also indicates whether the
requirement being tested is mandatory, conditional, or optional;

c) A description of the test method, specifying the test criteria that shall be used to determine the test verdict. A
test may evaluate a multi-part requirement. The method indicates the way in which the test shall be
conducted (e.g., manual or automated). The test method may reference other clauses in the test suite.

d) References to one or more sections in the standard that identify the requirements addressed by the test.
e) The testtype (either a basic test or a capability test).

Mandatory requirements are those which shall be observed in all cases. Conditional requirements shall be observed
if the conditions set out in the specification apply. Optional requirements may be selected to suit the implementation,
provided that any requirements applicable to the option are observed.*®

In addition to an ATS, testing requires an implementation conformance statement (ICS) that declares which
capabilities have been implemented for the product. This is especially important when there are options that may be
implemented (or not), in order to evaluate the conformance of a particular implementation against the relevant
requirements.

48 Examples of types of candidate products are listed in Section 2.1.
491S0 19105:2000, Section 5.3.

64

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Products that claim conformance to the NEO shall support the mandatory RDF/XML encoding of the NEO content as
specified in the officially published technical artifacts. They also may support the optional N-Triples encoding of the
NEO content.

The ATS for the NEO (Section A.2) specifies conformance evaluation of a product using the NEO content as a whole,
that is, with all of the content specified in the (mandatory) RDF/XML encoding and the (optional) N-Triples encoding.

An implementation conformance statement (ICS) for a product to be tested for conformance to the NEO shall contain
the following information regarding the capabilities that have been implemented for the product:

l. Identification of the NEO content baseline to which the product conforms. Each baseline indicates the NEO
Standard edition on which it is based.

Il Statement of what encodings the product supports. (Note: The product shall conform to the RDF/XML
encoding of the NEO content, and may also optionally conform to the N-Triples encoding.)

M. Statement of whether the product uses NEO content via active IRI-based Web links (using the REST API
component of the NSG Standards Registry) or from locally installed copies of the officially published
technical artifacts.

V. Statement that the product conforms to the NEO content in full.

V. Explanation of how to acquire authorized access to the system(s) where the product is installed, if needed to
test the product.

Abstract test cases may be automated for performance by a software system. Manual testing may be necessary
when human judgment is required or when automated testing is too complex.
A.1.3 Logical Structure of the Abstract Test Suite

The abstract test suite for the NEO contains three top-level test modules, each of which contains multiple test
modules and/or test cases. The structure of the test suite is depicted in Figure 14.

65

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Abstract Test Suite: ATS_NEO (NSG Enterprise Ontology)

ATC: Ontology
Dependency

Abstract Test Module: StructuralElements

=

Components\WithiRI

ATC: OntologylRI

ATC: ClassIRI

ATC: PropertylRI

ATC
DisjointClasses Rl

ATM: DisjointAxioms

ATM: Disjoint
CollectionOrList

ATC: Disjoin
Collection
ATC:
DisjointList

5
0

Members

=]
2
T
A

ATC: SkolemizedIRI

Abstract Test Module: SemanticsDocumentation

Abstract Test Module: Datatypes

ATM:
GenerzlizationHierarchy

ATC
TopEntityClasses

ATC Cass

Generalization
Relationships

ATM: Properties

ATC Attribute

ATC Relationship

5
i
g
:

!...
o..

5
=

Propertylnverse

:

OntologyDocumentation

ATC: Versioninfo

ATC
Ontologylabel

ATG
OntologyName

ATC: OntologyAlias

ATC: Ontology
DefinitionNote

ATC: Ontology
SourcelRI

ATC: Ontology

SourceTitle

ATC: Component
DefinitionNote

ATC: Component
SourcelRI

ATC
AssociationName

ATC Constrmint

ATC: PartOf

ATC Boolean

ATC: DateTime

CharacterString

5
is
o
N]
s gg
1]

ATC
LocalzedCharacter

String

ATC
LocalzedContinuous

String

ATC
IANAL3 nguage
Subtag

ATC: Real

ATC: Decimal

ATC: Integers

ATM:
MeasureDatatype

ATC
MeasureValue

ATC: MeasureUnit

DIAGRAM KEY
Abstract
ATM Test
Module
Abstract
CORE=
Case

EnumeratedTypes

ATC: Enumeration

ATC: Codelist

ATC ListedValue

:

ComplexDatatypes

3
Q

omplexDatatype

ATC
DatatypeUnion

DatatypeMeta

Figure 14 — Structure of the Abstract Test Suite for the NSG Enterprise Ontology

66

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

A.2 Abstract Test Suite for the NSG Enterprise Ontology (NEO)

a)
b)

c)

d)

e)

Test identifier: ATS_NEO

Test purpose: Verify the conformance of the product with the NEO (including the NEO Standard and
associated NEO content). (Mandatory)

Test method: Inspect the product to determine that it contains the required NEO structural elements (A.2.1),
semantics documentation (A.2.2), and datatypes (A.2.3), in accordance with the requirements in the NEO
(including the NEO Standard and associated NEO content).

Reference: NEO Standard, Section 5; NEO content baseline identified in the ICS.
Test type: Basic

NOTE: If an information construct from the NEO Standard is employed within a product, then the meaning and
structure of that construct shall be preserved, and information regarding the corresponding construct shall be
exactly as specified in the NEO Standard. If NEO content is employed within a product, then the meaning and
structure of the content shall be consistent with the NEO content as officially published in the mandatory
RDF/XML encoding.

A.21
a)
b)

c)

d)

e)

A211

a)
b)

c)

d)

e)

A.2.1.2

a)
b)

c)

d)

e)

Test Module for Conformance to Ontology Structure
Test identifier: StructuralElements

Test purpose: Verify the conformance of the product with the required NEO structural elements.
(Mandatory)

Test method: Inspect the product to determine that it contains the required structural elements, including all
ontology dependencies (A.2.1.1), elements with identity (A.2.1.2), generalization hierarchy (A.2.1.3), disjoint-
classes axioms (A.2.1.4), and property declarations (A.2.1.5).

Reference: NEO Standard (Figure 1; Sections 5.2.3, 5.2.4, 5.2.5, and 5.2.6; Sections 5.4.3.2, 5.4.3.3,
5.4.3.4,5.4.3.5, and 5.4.3.6).

Test type: Basic

Test Case for Ontology Dependency(ies)
Test identifier: OntologyDependency

Test purpose: Verify the conformance of the product with dependencies asserted in the NEO content.
(Mandatory)

Test method: Inspect the product to determine that it contains all of the owl : imports that are declared in
the NEO content.

Reference: NEO Standard (Sections 5.2.3 and 5.4.3.2).
Test type: Basic

Test Module for Components with Identity (IRIs)
Test identifier: ComponentsWithIRI

Test purpose: Verify the conformance of the product with all of the specified NEO content having identity
indicated by IRIs in the NEO namespace. (Mandatory)

Test method: Inspect the product to determine that it contains all of the NEO content having IRI values in the
NEO namespace, including the Ontology itself (A.2.1.2.1), EntityClasses (A.2.1.2.2), Properties (A.2.1.2.3),
and (if applicable) DisjointClasses (A.2.1.2.4).

Reference: NEO Standard (Sections 5.4.2.4 and 5.4.2.5).
Test type: Basic

A.2.1.2.1 Test Case for Ontology with IRI

a)

Test identifier: OntologyIRI

67

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

b) Test purpose: Verify the conformance of the product with the Ontology declaration and IRI value required for
the indicated NEO content baseline. (Mandatory)

c) Test method: (1) Inspect the product in order to determine that it contains a declaration of the NEO as an
owl:0Ontology, in which the value in rdf : about is the IRI of the NEO content baseline indicated in the
implementation conformance statement (ICS). (2) Inspect the product in order to determine that it contains
an owl :versionIRTI declaration in which the value is the IRI of the NEO content baseline indicated in
the ICS. The two values for the content baseline IRI shall be identical. The IRI for the NEO shall always

identify the applicable content baseline by utilizing an IRI that indicates the NEO version as identified in the
ICS.

d) Reference: NEO Standard (Section 5.4.2.4).
e) Testtype: Basic

A.2.1.2.2 Test Case for Entity Classes with IRIs
a) Test identifier: ClassIRI

b) Test purpose: Verify the conformance of the product with the EntityClass declarations and IRI values
required for each EntityClass in the NEO content baseline indicated in the ICS. (Mandatory)

c) Test method: Inspect the product in order to determine (1) that it contains an owl : Class declaration for
each EntityClass in the NEO content baseline indicated in the ICS, and (2) that the value in rdf : about for
each EntityClass is the value of the classIRI in the NEO content. The IRI for a NEO EntityClass shall always

identify the applicable content baseline by utilizing an IRI that indicates the NEO version as identified in the
ICS.

d) Reference: NEO Standard (Section 5.4.2.5).
e) Testtype: Basic

A.2.1.2.3 Test Case for Entity Properties with IRIs
a) Testidentifier: PropertyIRI

b) Test purpose: Verify the conformance of the product with the EntityProperty (specifically, EntityAttribute and
EntityRelationship) declarations and IRI values required for each EntityProperty in the NEO content baseline
indicated in the ICS. (Mandatory)

c) Test method: Inspect the product in order to determine (1) that it contains an owl : DatatypeProperty
oran owl:0ObjectProperty declaration for each EntityProperty in the NEO content baseline indicated
in the ICS, and (2) that the value in rdf : about for each EntityAttribute or EntityRelationship is the value
of the propertyIRI in the NEO content. The IRI for a NEO EntityProperty shall always identify the applicable
content baseline by utilizing an IRI that indicates the NEO version as identified in the ICS.

d) Reference: NEO Standard (Section 5.4.2.5).
e) Testtype: Basic

A.2.1.2.4 Test Case for DisjointClasses with IRIs
a) Testidentifier: DisjointClassesIRI

b) Test purpose: Verify the conformance of the product with the declaration of DisjointClasses using
Skolemized IRIs. (Conditional on the implementation being in the N-Triples encoding)

c) Test method: See A.2.1.4.3.
d) Reference: NEO Standard (Section 5.4.3.4).
e) Testtype: Capability test

A.2.13 Test Module for Generalization (Subclass) Hierarchy
a) Testidentifier: GeneralizationHierarchy

b) Test purpose: Verify the conformance of the product with the complete class-generalization hierarchy (i.e.,
subclass tree) of the NEO content. (Mandatory)

68

d)

e)

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Test method: Inspect the product in order to determine that it contains all of the most general concepts
(A.2.1.3.1) in the NEO content and all of the rdfs: subClassOf relationships (A.2.1.3.2) between
EntityClasses in the NEO content.

Reference: NEO Standard (Section 5.3.5 and Section 5.4.3.3).
Test type: Basic

A.2.1.3.1 Test Case for Top Entity Classes

a)
b)

c)

d)

e)

Test identifier: TopEntityClasses

Test purpose: Verify the conformance of the product with the most basic (i.e., top) EntityClasses in the NEO
content. (Mandatory)

Test method: Inspect the product in order to determine that it contains all of the most general EntityClasses
in the NEO content, i.e., the EntityClasses that are not subclasses of any other NEO EntityClass.

Reference: NEO Standard (Section 5.4.3.3).
Test type: Basic

A.2.1.3.2 Test Case for Generalization Relationships

a)
b)

c)

d)

e)

A.2.1.4

a)
b)

c)

d)

e)

Test identifier: GeneralizationRelationships

Test purpose: Verify the conformance of the product with all the generalization relationships in the NEO
content. (Mandatory)

Test method: Inspect the product in order to determine that it contains all of the rdfs: subClassOf
relationships that are declared between EntityClasses in the NEO content.

Reference: NEO Standard (Section 5.4.3.3).
Test type: Basic

Test Module for Disjointness Axioms
Test identifier: DisjointAxioms

Test purpose: Verify the conformance of the product with the requirement to represent the disjointness
constraints on all sets of sibling EntityClasses in the NEO content. (Mandatory)

Test method: Inspect the product in order to determine that it contains the required DisjointClasses axioms
(A.2.1.4.1) used for declaring the pairwise disjointness of sibling EntityClasses (A.2.1.4.2) in the NEO
content, with Skolemized IRIs (A.2.1.4.3) where required.

Reference: NEO Standard (Section 5.4.3.4, Section 5.4.5.2, and Section 5.4.5.3).
Test type: Basic

NOTE: Sibling EntityClasses are those which have the same EntityClass as their generalization (i.e., their
superclass).

A.2.1.4.1 Test Module for Disjoint Collection or List

a)
b)

c)

d)

e)

Test identifier: DisjointCollectionOrList

Test purpose: Verify the conformance of the product with the requirement to include components to
represent DisjointClasses axioms for all sets of sibling EntityClasses. (Mandatory)

Test method: Inspect the product in order to determine that (1) it contains the required structural
components appropriate to the encoding (A.2.1.4.1.1 or A.2.1.4.1.2) for stating the DisjointClasses axioms
for sibling subclasses, and (2) it contains a DisjointClasses component for every set of sibling EntityClasses
in the NEO content.

Reference: NEO Standard (Section 5.4.3.4, Section 5.4.5.2, and Section 5.4.5.3).
Test type: Basic

69

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

A214.1.1 Test Case for DisjointClasses Collection

a)
b)

c)

d)

e)

Test identifier: DisjointCollection

Test purpose: Verify the conformance of the product with the requirement to represent DisjointClasses as
collections of EntityClasses. (Conditional on the use of the (mandatory) RDF/XML encoding in the IUT)

Test method: Inspect the product in order to determine that it contains the required
owl:AllDisjointClasses component, declared as a (RDF parseType) collection, for each set of
sibling EntityClasses in the NEO content.

Reference: NEO Standard (Section 5.4.3.4 and Section 5.4.5.2).
Test type: Capability test

A.2.1.4.1.2 Test Case for DisjointClasses List

a)
b)

c)

d)

e)

Test identifier: DisjointList

Test purpose: Verify the conformance of the product with the requirement to represent DisjointClasses as
lists of EntityClasses. (Conditional on the use of the (optional) N-Triples encoding in the IUT)

Test method: Inspect the product in order to determine that it contains the required
http://www.w3.0rg/2002/07/owl#AlIDisjointClasses component, structured as an RDF List, for each set of
sibling EntityClasses in the NEO content.

Reference: NEO Standard (Section 5.4.3.4 and Section 5.4.5.3).
Test type: Capability test

A.2.1.4.2 Test Case for Members of DisjointClasses

a)
b)

c)

d)

e)

Test identifier: DisjointMembers

Test purpose: Verify the conformance of the product with the required enumeration of all sibling
EntityClasses within a DisjointClasses axiom. (Mandatory)

Test method: Inspect the product in order to determine that it contains (1) (for the RDF/XML encoding) a
complete collection of the owl :members of each owl:Al1DisjointClasses componentin the NEO
content, or (2) (for the N-Triples encoding) a complete list of the http://www.w3.0rg/2002/07/owl#members of
each http://www.w3.0rg/2002/07/owl#AlIDisjointClasses component in the NEO content.

Reference: NEO Standard (Section 5.4.5.2 and Section 5.4.5.3).
Test type: Capability test

A.2.1.4.3 Test Case for Skolemized IRIs

a)
b)

d)

e)

Test identifier: SkolemizedIRI

Test purpose: Verify the conformance of the product with the use of a Skolemized IRI required as the
identifier for each representation of a DisjointClasses axiom. (Conditional on the use of the (optional) N-
Triples encoding in the IUT)

Test method: Inspect the product in order to determine that it contains a Skolemized IRI as the identifier for
each instance of http://www.w3.0rg/2002/07/owl#AlIDisjointClasses in the N-Triples encoding of the NEO
content.

Reference: NEO Standard (Section 5.4.5.3).
Test type: Capability

NOTE: The URI base for a Skolemized IRI differs from the URI base of the NEO (e.g.,
“http://api.nsgreg.nga.mil/ontology/neo-ent/...”). Example of a Skolemized IRI: http://api.nsgreg.nga.mil/.well-
known/genid/C26B41F050384C878C00D7D462C2730F.

A.2.15

a)

Test Module for Properties

Test identifier: Properties

70

http://www.w3.org/2002/07/owl#AllDisjointClasses
http://www.w3.org/2002/07/owl#members
http://www.w3.org/2002/07/owl#AllDisjointClasses
http://www.w3.org/2002/07/owl#AllDisjointClasses
http://api.nsgreg.nga.mil/.well-known/genid/C26B41F050384C878C00D7D462C2730F
http://api.nsgreg.nga.mil/.well-known/genid/C26B41F050384C878C00D7D462C2730F

b)

d)

e)

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Test purpose: Verify the conformance of the product with the encodings for each EntityAttribute and
EntityRelationship in the indicated NEO content baseline. (Mandatory)

Test method: Inspect the product in order to determine that it contains the axioms used to define each
Property in the NEO content, including whether itis an owl : DatatypeProperty or
owl:0bjectProperty (A.2.1.5.1 and A.2.1.5.2), that property domains (A.2.1.5.3) and ranges
(A.2.1.5.4) are declared where required, and that property inverses (A.2.1.5.5) are declared where required.

Reference: NEO Standard (Section 5.4.3.5 and 5.4.3.6).
Test type: Basic

A.2.1.5.1 Test Case for Entity Attributes

a)
b)

c)

d)

e)

Test identifier: Attribute

Test purpose: Verify the conformance of the product with the declarations for each EntityAttribute in the
indicated NEO content baseline. (Mandatory)

Test method: Inspect the product in order to determine that it contains each EntityAttribute (represented as
an owl:DatatypeProperty or owl:0bjectProperty) included in the NEO content.

Reference: NEO Standard (Section 5.4.3.5).
Test type: Basic

A.2.1.5.2 Test Case for Entity Relationships

a)
b)

c)

d)

e)

Test identifier: Relationship

Test purpose: Verify the conformance of the product with the specified declarations for each
EntityRelationship in the NEO content. (Mandatory)

Test method: Inspect the product in order to determine that it contains each EntityRelationship (represented
as an owl :ObJjectProperty) in the NEO content.

Reference: NEO Standard (Section 5.4.3.6).
Test type: Basic

A.2.1.5.3 Test Case for Property Domain

a)
b)

c)

d)

e)

Test identifier: PropertyDomain

Test purpose: Verify the conformance of the product with the declaration of a domain for each OWL Property
representing an EntityAttribute or EntityRelationship. (Mandatory)

Test method: Inspect the product to determine that, if the NEO content contains an (optional)
rdfs:domain declaration for an OWL Property, then the product also contains that rdfs:domain
declaration.

Reference: NEO Standard (Section 5.4.3.5 and Section 5.4.3.6).
Test type: Basic

A.2.1.5.4 Test Case for Property Range

a)
b)

c)

d)

e)

Test identifier: PropertyRange

Test purpose: Verify the conformance of the product with the declaration of a range for each OWL Property
representing an EntityAttribute or EntityRelationship. (Mandatory)

Test method: Inspect the product to determine that, if the NEO content contains an (optional) rdfs: range
declaration for an OWL Property, then the product also contains that rdfs: range declaration.

Reference: NEO Standard (Section 5.4.3.5 and Section 5.4.3.6).
Test type: Basic

71

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

A.2.1.5.5 Test Case for Property Inverse
a) Testidentifier: Propertylnverse

b) Test purpose: Verify the conformance of the product with the declaration of an inverse relationship between
OWL Object Properties where required. (Mandatory)

c) Test method: Inspect the product to determine that, if the NEO content contains an owl: inverseOf
declaration between two OWL Object Properties, then the product also contains that owl : inverseOf
declaration.

d) Reference: NEO Standard (Section 5.4.3.6).
e) Testtype: Basic

A.2.2 Test Module for Documentation of Semantics
a) Testidentifier: SemanticsDocumentation

b) Test purpose: Verify the conformance of the product with the documentation properties in the NEO content
(including both neo-ent and neo-enum namespaces) and the ontology components (Entity Classes and
Properties), as required by the NEO Standard and associated NEO content. (Mandatory)

c) Test method: Inspect the product in order to determine that it contains all of the required documentation
properties with the correct values for the NEO ontologies (A.2.2.1) and ontology components (A.2.2.2).

d) Reference: NEO Standard (Sections 5.4.3.2, 5.4.3.3, 5.4.3.5, and 5.4.3.6).
e) Testtype: Basic

A2.2.1 Test Module for Ontology Documentation
a) Test identifier: OntologyDocumentation

b) Test purpose: Verify the conformance of the product with the ontology documentation properties in the NEO
content. (Mandatory)

c) Test method: Inspect the product in order to determine that it contains the required ontology documentation
properties with the correct values (A.2.2.1.1, A.2.2.1.2, A.2.2.1.3, A.2.2.1.4, A.2.2.1.5, A.2.2.1.6, and
A.2.2.1.7) for the NEO content.

d) Reference: NEO Standard (Section 5.4.3.2).
e) Testtype: Basic

A.2.2.1.1 Test Case for Ontology Version Information
a) Test identifier: Versioninfo

b) Test purpose: Verify the conformance of the product with documentation of the required version information
for the NEO content. (Mandatory)

c) Test method: Inspect the product in order to determine that it contains the required documentation property
owl:versionInfo with the value specified in the NEO content.

d) Reference: NEO Standard (Section 5.4.3.2).
e) Testtype: Basic

A.2.2.1.2 Test Case for Ontology Label
a) Testidentifier: OntologyLabel

b) Test purpose: Verify the conformance of the product with the documentation of the label for the NEO
ontology. (Mandatory)

c) Test method: Inspect the product in order to determine that it contains the required documentation
rdfs:label with the value as specified in the NEO Standard and NEO content.

d) Reference: NEO Standard (Section 5.4.3.2).

72

e)

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Test type: Basic

A.2.2.1.3 Test Case for Ontology Name

a)
b)

c)

d)

e)

Test identifier: OntologyName

Test purpose: Verify the conformance of the product with documentation of the name for the NEO ontology.
(Mandatory)

Test method: Inspect the product in order to determine that it contains the required documentation property
skos:prefLabel with the value as specified in the NEO Standard and the NEO content.

Reference: NEO Standard (Section 5.4.3.2).
Test type: Basic

A.2.2.1.4 Test Case for Ontology Alias

a)
b)

c)

d)

e)

Test identifier: OntologyAlias

Test purpose: Verify the conformance of the product with documentation of alias(es) for the NEO ontology.
(Mandatory)

Test method: Inspect the product in order to determine that it contains the required documentation property
skos:altLabel with the value “NEQO” as specified in the NEO Standard and the NEO content.

Reference: NEO Standard (Section 5.4.3.2).
Test type: Basic

A.2.2.1.5 Test Case for Ontology Definition Note

a)
b)

c)

d)

e)

Test identifier: OntologyDefinitionNote

Test purpose: Verify the conformance of the product with documentation of the required definitionNote for
the NEO ontology. (Mandatory)

Test method: Inspect the product in order to determine that it contains the required documentation property
skos:definition with the value as specified in the NEO Standard and the NEO content.

Reference: NEO Standard (Section 5.4.3.2).
Test type: Basic

A.2.2.1.6 Test Case for Ontology Source Reference

a)
b)

c)

d)

e)

Test identifier: OntologySourcelRlI

Test purpose: Verify the conformance of the product with documentation of the required sourcelRI for the
NEO ontology. (Mandatory)

Test method: Inspect the product in order to determine that it contains the required documentation property
rdfs:isDefinedBy with the value specified in the NEO content.

Reference: NEO Standard (Section 5.4.3.2).
Test type: Basic

A.2.2.1.7 Test Case for Ontology Source Title

a)
b)

c)

d)
e)

Test identifier: OntologySourceTitle

Test purpose: Verify the conformance of the product with the documentation of the title of the Standard
document on which the NEO is based. (Mandatory)

Test method: Inspect the product in order to determine that it contains the required documentation property
dct : source with the value specified in the NEO content.

Reference: NEO Standard (Section 5.4.3.2).
Test type: Basic

73

A.2.2.2

a)
b)

c)

d)

e)

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Test Module for Ontology Component Documentation
Test identifier: OntologyComponentDocumentation

Test purpose: Verify the conformance of the product with the required documentation properties for the
EntityClasses and EntityProperties specified in the NEO content. (Mandatory)

Test method: Inspect the product in order to determine that it contains the applicable EntityClass and Entity
Property documentation properties with the correct values (A.2.2.2.1, A.2.2.2.2, A.2.2.2.3,A.2.2.2.4,
A.2.2.25 A2226,A2227,A.2.2.2.8, and A.2.2.2.9) for each EntityClass and EntityProperty in the NEO
content.

Reference: NEO Standard (Section 5.2.7, Section 5.3.6, Section 5.4.2.5, and Sections 5.4.3.3, 5.4.3.5, and
5.4.3.6).

Test type: Basic

A.2.2.2.1 Test Case for Abstract Ontology Component

a)
b)

c)

d)

e)

Test identifier: IsAbstract

Test purpose: Verify the conformance of the product with the required indication of all abstract
EntityClasses. (Conditional on the ontology component being an EntityClass)

Test method: Inspect the product in order to determine that it contains an assertion of the Boolean
documentation property 1s019150-2:isAbstract with value TRUE for each abstract EntityClass in
the NEO content.

Reference: NEO Standard (Section 5.2.7, Section 5.3.6, and Section 5.4.3.3).
Test type: Basic

NOTE: Abstract classes shall not be directly instantiated.

A.2.2.2.2 Test Case for Ontology Component Label

a)
b)

c)

d)

e)

Test identifier: ComponentLabel

Test purpose: Verify the conformance of the product with the documentation of the label for every ontology
component. (Mandatory)

Test method: Inspect the product in order to determine that each ontology component has the required
documentation property rdfs: label with the value specified in the NEO content. The value is the same
as the terminal segment of the IRI for the component (i.e., ClassIRI or PropertyIRlI).

Reference: NEO Standard (Section 5.4.2.5; Sections 5.4.3.3, 5.4.3.5, and 5.4.3.6).
Test type: Basic

A.2.2.2.3 Test Case for Ontology Component Name

a)
b)

c)

d)

e)

Test identifier: ComponentName

Test purpose: Verify the conformance of the product with documentation of the name for each ontology
component. (Mandatory)

Test method: Inspect the product in order to determine that each Ontology component has the required
documentation property skos:prefLabel with the value for the preferred human-readable name of the
class as specified in the NEO content.

Reference: NEO Standard (Section 5.2.7; Sections 5.4.3.3, 5.4.3.5, and 5.4.3.6).
Test type: Basic

NOTE: The preferred human-readable name of the Ontology component should be used to refer to that class in
navigation menus, browse trees, or other displays.

A.2.2.2.4 Test Case for Ontology Component Alias

a)

Test identifier: ComponentAlias

74

b)

d)

e)

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Test purpose: Verify the conformance of the product with documentation of the optional alias(es), if any, for
each ontology component. (Mandatory)

Test method: Inspect the product in order to determine that each Ontology component has the
documentation property skos:altLabel with the value(s) specified in the NEO content (if there are any).
Aliases are optional elements in the NEO.

Reference: NEO Standard (Section 5.2.7; Sections 5.4.3.3, 5.4.3.5, and 5.4.3.6).
Test type: Basic

A.2.2.2.5 Test Case for Ontology Component Definition Note

a)
b)

c)

d)

e)

Test identifier: ComponentDefinitionNote

Test purpose: Verify the conformance of the product with documentation of the required definitionNote for
each Ontology component. (Mandatory)

Test method: Inspect the product in order to determine that each ontology component has the required
documentation property skos:definition with the value specified in the NEO content.

Reference: NEO Standard (Section 5.2.7; Sections 5.4.3.3, 5.4.3.5, and 5.4.3.6).
Test type: Basic

A.2.2.2.6 Test Case for Ontology Component Source Reference

a)
b)

c)

d)

e)

Test identifier: ComponentSourcelRI

Test purpose: Verify the conformance of the product with documentation of the required sourcelRI for each
Ontology component. (Mandatory)

Test method: Inspect the product in order to determine that each Ontology component has the required
documentation property rdfs: isDefinedBy with the value specified in the NEO content.

Reference: NEO Standard (Section 5.2.7; Sections 5.4.3.3, 5.4.3.5, and 5.4.3.6).
Test type: Basic

A.2.2.2.7 Test Case for Association Name

a)
b)

c)

d)

e)

Test identifier: AssociationName

Test purpose: Verify the conformance of the product with the required documentation of the association
name for each EntityRelationship component derived from an association role. (Conditional on the ontology
component being an EntityRelationship derived from an association)

Test method: Inspect the product in order to determine that each EntityRelationship component has the
required documentation property 1so19150-2:associationName as required, with the value
specified in the NEO content.

Reference: NEO Standard (Section 5.2.7; Section 5.4.3.6).
Test type: Basic

A.2.2.2.8 Test Case for Constraint

a)
b)

c)

d)

e)

Test identifier: Constraint

Test purpose: Verify the conformance of the product with the use of descriptions of constraints on
EntityClass ontology components. (Conditional on the ontology component being an EntityClass that has a
constraint)

Test method: Inspect the product in order to determine that each EntityClass that has a constraint
declaration specified in the NEO content has the documentation property 1s019150-2:constraint
with a natural language statement of the constraint, as specified in the NEO content.

Reference: NEO Standard (Section 5.2.7; Section 5.4.3.3).
Test type: Basic

75

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

A.2.2.29 Test Case for Ontology Component Part-of

a)
b)

c)

d)

e)

A.2.3
a)
b)

c)

d)

e)

A.23.1

a)
b)

c)

d)

e)

Test identifier: PartOf

Test purpose: Verify the conformance of the product with the required use of dct : isPartOf declarations.
(Conditional on a product that represents the ontology components in separate resource files)

Test method: Inspect the product in order to determine that in each individual resource file, the Ontology
component has the required documentation property dct : isPartOf with the value of the NEO IRI.

Reference: NEO Standard (Section 6.3.3).
Test type: Basic

Test Module for Datatype Conformance
Test identifier: Datatypes
Test purpose: Verify the conformance of the product with the datatypes specified in the NEO. (Mandatory)

Test method: Inspect the product to determine that it uses the required datatypes and encodings for
Primitive Datatypes (A.2.3.1), MeasureDatatype (A.2.3.2), EnumeratedTypes (A.2.3.3), and
ComplexDatatypes (A.2.3.4), as specified in the NEO Standard and associated NEO content.

Reference: NEO Standard (Section 5.2.8; Section 5.4.4).
Test type: Basic

Test Module for Primitive Datatypes
Test identifier: PrimitiveDatatypes

Test purpose: Verify the conformance of the product with the primitive datatypes specified in the NEO.
(Mandatory)

Test method: Inspect the product in order to determine that it uses primitive datatypes as specified in the
NEO Standard and associated NEO content.

Reference: NEO Standard (Section 5.2.8; Section 5.4.4.2).
Test type: Basic

A.2.3.1.1 Test Case for IRI Datatype

a)
b)

c)

d)

e)

Test identifier: IRI
Test purpose: Verify the conformance of the product with the IRI datatype. (Mandatory)

Test method: Inspect the product in order to determine that it uses values in the range of the required
datatype xsd:anyURI for properties specified with the value type IRI in the NEO Standard and associated
NEO content.

Reference: NEO Standard (Section 5.2.8.6; Section 5.4.4.2).
Test type: Basic

A.2.3.1.2 Test Case for Boolean Datatype

a)
b)

c)

d)

e)

Test identifier: Boolean
Test purpose: Verify the conformance of the product with the Boolean datatype. (Mandatory)

Test method: Inspect the product in order to determine that it uses values in the range of the required
datatype xsd:boolean for properties specified with the value type Boolean in the NEO Standard and
associated NEO content.

Reference: NEO Standard (Section 5.2.8.5; Section 5.4.4.2).
Test type: Basic

76

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

A.2.3.1.3 Test Case for DateTime Datatypes
a) Testidentifier: DateTime
b) Test purpose: Verify the conformance of the product with the DateTime datatype. (Mandatory)

c) Test method: Inspect the product to determine that it uses values that conform to the xsd:dateTime

datatype for the properties specified with the value type DateTime in the NEO Standard and associated
NEO content.

d) Reference: NEO Standard (Section 5.2.8.7; Section 5.4.4.2).
e) Testtype: Basic

A.2.3.1.4 Test Case for CharacterString Datatype
a) Test identifier: CharacterString
b) Test purpose: Verify the conformance of the product with the CharacterString datatype. (Mandatory)

c) Test method: (1) Inspect the product in order to determine that it uses values in the range of the required
datatype rdf: PlainLiteral for properties specified with the value type CharacterString in the NEO
Standard and associated NEO content. (2) Values that are character strings (e.g., values of xsd:string)

with no language tag satisfy the requirements for the value type CharacterString in the NEO model. (3)
Optionally, a language tag may be present.

d) Reference: NEO Standard (Section 5.2.8.2; Section 5.4.4.2).
e) Testtype: Basic

A.2.3.1.5 Test Case for LocalizedCharacterString Datatype
a) Testidentifier: LocalizedCharacterString

b) Test purpose: Verify the conformance of the product with the LocalizedCharacterString datatype.
(Mandatory)

c) Test method: (1) Inspect the product in order to determine that it uses values in the range of the required
datatype rdf: PlainLiteral for properties specified with the value type LocalizedCharacterString in the
NEO Standard and associated NEO content. (2) In order to satisfy the requirements for a
LocalizedCharacterString in the NEO information model, a value must include both a character string and a
language tag.

d) Reference: NEO Standard (Section 5.2.8.3; Section 5.4.4.2).
e) Testtype: Basic

A.2.3.1.6 Test Case for LocalizedContinuousString Datatype
a) Testidentifier: LocalizedContinuousString

b) Test purpose: Verify the conformance of the product with the LocalizedContinuousString datatype.
(Mandatory)

c) Test method: (1) Inspect the product in order to determine that it uses values in the range of the required
datatype rdf: PlainLiteral for properties specified with the value type LocalizedContinuousString in
the NEO Standard and associated NEO content. (2) In order to satisfy the requirements for a
LocalizedCharacterString in the NEO information model, a value must include both a character string and a

language tag. (3) The string portion of the value must not contain any space characters (unless those are
encoded using ‘%20’).

d) Reference: NEO Standard (Section 5.2.8.4; Section 5.4.4.2).
e) Testtype: Basic

A.2.3.1.7 Test Case for IANALanguageSubtag Datatype
a) Testidentifier: IANALanguageSubtag
b) Test purpose: Verify the conformance of the product with the IANALanguageSubtag datatype. (Mandatory)

77

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

c) Test method: (1) Inspect the product to determine that it uses values in the range of the required language
datatype for properties specified with the value types LocalizedCharacterString and
LocalizedContinuousString in the NEO Standard and associated NEO content. (2) In order to satisfy the
requirements for an IANALanguageSubtag in the NEO information model, a value must belong to the set of
two-character, lowercase values specified in BCP 47).

d) Reference: NEO Standard (Section 5.2.8.3; Section 5.4.4.2).
Test type: Basic

A.2.3.1.8 Test Case for Real Datatype
a) Testidentifier: Real
b) Test purpose: Verify the conformance of the product with the Real datatype. (Mandatory)

c) Test method: Inspect the product to determine that it uses values in the range of the owl : real datatype for
properties specified with the value type Real in the NEO Standard and associated NEO content.

d) Reference: NEO Standard (Section 5.2.8.9; Section 5.4.4.2).
Test type: Basic

A.2.3.1.9 Test Case for Decimal Datatype
a) Test identifier: Decimal
b) Test purpose: Verify the conformance of the product with the Decimal datatype. (Mandatory)

c) Test method: Inspect the product to determine that it uses values in the range of the xsd:decimal

datatype for properties specified with the value type Decimal in the NEO Standard and associated NEO
content.

d) Reference: NEO Standard (Section 5.2.8.10; Section 5.4.4.2).
Test type: Basic

A.2.3.1.10 Test Case for Integer Datatypes
a) Testidentifier: Integers
b) Test purpose: Verify the conformance of the product with the Integer datatype. (Mandatory)

c) Test method: Inspect the product to determine that it uses values in the range of the xsd:integer
datatype, or (when specified) xsd:nonNegativeInteger for properties specified with the values type
Integer (or, when specified, NonNegativelnteger) in the NEO Standard and associated NEO content.

d) Reference: NEO Standard (Section 5.2.8.11; Section 5.4.4.2).
Test type: Basic

A.2.3.2 Test Module for Measure Datatypes
a) Test identifier: MeasureDatatype
b) Test purpose: Verify the conformance of the product with the MeasureDatatype datatype. (Mandatory)

c) Test method: Inspect the product in order to determine that it uses the correct encoding for each
MeasureDatatype, as specified in the NEO Standard and associated NEO content.

d) Reference: NEO Standard (Section 5.2.8.13; Section 5.4.4.3).
e) Testtype: Basic

A.2.3.2.1 Test Case for Measure Value
a) Testidentifier: MeasureValue

b) Test purpose: Verify the conformance of the product with the MeasureValue property. (Mandatory)

78

d)

e)

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Test method: Inspect the product in order to determine that it uses the correct encoding (including range
declaration) for the MeasureValue property of each Measure Datatype as specified in the NEO Standard
and associated NEO content.

Reference: NEO Standard (Section 5.2.8.13; Section 5.4.4.3).
Test type: Basic

A.2.3.2.2 Test Case for Measure Unit

a)
b)

c)

d)

e)

A.2.3.3

a)
b)

c)

d)

e)

Test identifier: MeasureUnit
Test purpose: Verify the conformance of the product with the MeasureUnit property. (Mandatory)

Test method: Inspect the product in order to determine that it uses the correct encoding for the
MeasureValue property (including specification of a UnitOfMeasure from the allowable values) for each
Measure Datatype as specified in the NEO Standard and associated NEO content.

Reference: NEO Standard (Section 5.2.8.13; Section 5.4.4.3).
Test type: Basic

Test Module for Enumerated Types
Test identifier: EnumeratedTypes

Test purpose: Verify the conformance of the product with the EnumeratedType datatypes and ListedValues.
(Mandatory)

Test method: Inspect the product in order to determine that it uses the correct encoding of EnumeratedType
components and their ListedValues as specified in the NEO Standard and associated NEO content.

Reference: NEO Standard (Sections 5.2.8.15 and 5.2.8.16; Section 5.4.4.4).
Test type: Basic

A.2.3.3.1 Test Case for Enumeration

a)
b)

c)

d)

e)

Test identifier: Enumeration
Test purpose: Verify the conformance of the product with the Enumeration datatype. (Mandatory)

Test method: Inspect the product in order to determine that it uses the correct encoding of Enumerations as
specified in the NEO Standard and associated NEO content.

Reference: NEO Standard (Section 5.2.8.15; Section 5.4.4.4).
Test type: Basic

A.2.3.3.2 Test Case for Codelist

a)
b)

c)

d)

e)

Test identifier: Codelist
Test purpose: Verify the conformance of the product with the Codelist datatype. (Mandatory)

Test method: Inspect the product in order to determine that it uses the correct encoding of Codelists as
specified in the NEO Standard and associated NEO content.

Reference: NEO Standard (Section 5.2.8.16; Section 5.4.4.4).
Test type: Basic

A.2.3.3.3 Test Case for Listed Value

a)
b)

<)

Test identifier: ListedValue

Test purpose: Verify the conformance of the product with the encoding of ListedValues for enumerated
types. (Mandatory)

Test method: Inspect the product in order to determine that it uses the correct encoding of ListedValues as
specified in the NEO Standard and associated NEO content.

79

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

d) Reference: NEO Standard (Table 4; Section 5.2.8.17; Section 5.4.4.4); NEO content baseline
e) Testtype: Basic

A.2.3.4 Test Module for Complex Datatypes
a) Test identifier: ComplexDatatypes

b) Test purpose: Verify the conformance of the product with the correct encoding of complex datatypes,
including the special complex datatypes in DatatypeUnion and DatatypeMeta. (Mandatory)

c) Test method: Inspect the product in order to determine that each ComplexDatatype component is correctly
encoded as specified in the NEO Standard and associated NEO content.

d) Reference: NEO Standard (Sections 5.2.8.18, 5.2.8.19, and 5.2.8.20; Section 5.4.4.5).
e) Testtype: Basic

A.2.3.4.1 Test Case for Complex Datatype
a) Test identifier: ComplexDatatype

b) Test purpose: Verify the conformance of the product with the correct encoding of each ComplexDatatype
datatype not included in Datatype Union or DatatypeMeta. (Mandatory)

c) Test method: Inspect the product in order to determine that it encodes complex datatypes (not included in
DatatypeUnion or DatatypeMeta) as specified in the NEO Standard and associated NEO content.

d) Reference: NEO Standard (Section 5.2.8.18; Section 5.4.4.5).
e) Testtype: Basic

A.2.3.4.2 Test Case for Datatype Union
a) Test identifier: DatatypeUnion

b) Test purpose: Verify the conformance of the product with the correct encoding of each DatatypeUnion
datatype. (Mandatory)

c) Test method: Inspect the product in order to determine that each DatatypeUnion datatype is encoded as an
owl :Class with a set of two or more alternative properties that are not evaluated together.

d) Reference: NEO Standard (Section 5.2.8.19; Section 5.4.4.5).
e) Testtype: Basic

A.2.3.4.3 Test Case for Datatype Meta
a) Testidentifier: DatatypeMeta

b) Test purpose: Verify the conformance of the product with the correct encoding of each DatatypeMeta
datatype. (Mandatory)

c) Test method: Inspect the product in order to determine that each DatatypeMeta datatype is encoded as an
owl :Class with two or more properties, providing a primary data value and metadata about an evaluated
property.

d) Reference: NEO Standard (Section 5.2.8.20; Section 5.4.4.5).
e) Testtype: Basic

80

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Annex B = ICS Pro Forma
(Normative)

B.1 Introduction

An Implementation Conformance Statement (ICS) is a statement made by the supplier of an implementation or
system that is claimed to conform to a given standard (or a set of standards), in which it is declared which capabilities
have been implemented in the product in conformance with the standard. This is especially important when there are
options that may be implemented (or not), so that a tester may evaluate the conformance of an implementation
against the relevant requirements.

B.2 ICS Pro Forma for the NEO

An ICS pro forma provides a uniform means for the implementer to declare the mandatory, conditional, and optional
provisions of the standard that were implemented. The NEO ICS Pro Forma shall be used by the supplier or sponsor
of an implementation as a framework to document the standards-conformant capabilities of the implementation of this
standard. The NEO ICS Pro Forma is on the following page.

The ICS Pro Forma shall provide the following information:

e The Implementation Under Test (IUT) provides the name of the realization of a specification that is the
focus of the test.

e The Test Sponsor information includes the name, organization, and contact information for the person or
organization that is submitting the implementation for test.

e The Date of Initial ICS Completion is the date on which the Test Sponsor submitted the completed
Implementation Conformance Statement.

e The Conformance Class designates the set of conformance requirements pertinent to the test. The NEO
Standard, Ed. 1.0 (with associated NEO content) has a single conformance class (“A”).

e The NEO Content Baseline identifies the version number of the NEO content to which the IUT claims
conformance.

e The Supported Encoding(s) identifies which official NEO content encoding(s) are used by the IUT, which
shall be either the RDF/XML encoding or the N-Triples encoding, or both.

e The Test Point(s) information specifies where the test is to be applied (e.qg., at input or output from the
implementation, or to static content).

e The Test Organization information includes the name of the organization, the POC, and contact information
for the organization that is performing the conformance test.

e The Date of Test Completion is the date on which the Test Organization completed the conformance
testing, including results returned to the Test Sponsor.

81

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

NEO - Implementation Conformance Statement (ICS)
Column Key: B =Baseline NEO S =Subset Obligation |=Implemented P/F =Pass/Fail

Column Values: M = Mandatory O = Optional C = Conditional

Implementation Under Test:
Date of Initial ICS Completion:

NEO Content Baseline (Version #):

Test Point(s):
Date of Test Completion:

Test Sponsor:

Conformance Class: A

Supported Encodings (RDF/XML and/or
N-Triples):

Test Organization:

Characteristic

Parameter

Obligation

S

PIF

General Capabilities.

The NEO is an OWL 2 ontology of
domain concepts intended for use in
the NSG to consistently and
accurately represent elements of
shared GEOINT in data resources
and applications. NEO content is
encoded in RDF/XML (mandatory)
and N-Triples (optional).

Those parameters shown on the
right as ‘implemented’ provide an
indication of the capabilities enabled
by the uses of NEO content
produced by the implementation
under test.

These parameters are informational
only; the concept of pass/fail is not
applicable for this characteristic.

NEO content is used for the representation
(e.g., categorization) of data instances.

NEO content is used for indexing data
resources.

NEO content is used to provide semantics
for Linked Data.

NEO content is used to explore data
resources and navigate Linked Data.

NEO content provides terms and definitions
for an application that performs semantic
search by leveraging concepts used to
describe data resources.

NEO content is used for constraint checking
of data resources.

NEO content is used by Web services that
locate and/or share data resources.

NEO content is used in the mapping or
integration of domain models (e.g.,
application schemas, taxonomies,
ontologies).

NEO content is used as a reference
ontology for instance-level data integration.

NEO content is used for unified querying
over heterogeneous data.

NEO content is used to support inferencing
over data resources to conclude implicit
information from asserted information.

Other (Describe):

Other (Describe):

82

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

NEO - Implementation Conformance Statement (ICS)
Column Key: B =Baseline NEO S =Subset Obligation |=Implemented P/F =Pass/Fail

Column Values: M = Mandatory O = Optional C = Conditional

Implementation Under Test: Test Sponsor:
Date of Initial ICS Completion: Conformance Class: A
NEO Content Baseline (Version #): Supported Encodings (RDF/XML and/or
Test Point(s): N-Triples):
Date of Test Completion: Test Organization:
o Obligation
Characteristic Parameter
B S | P/F
Conformance Class. Conformance Class A
The Abstract Test Suite (ATS) for NEO content utilized or produced by this
the NEO Standard, Edition 1.0, and implementation conforms to the complete M
associated NEO content is a NEO content. An implementation must
compendium of abstract test cases satisfy all tests in the ATS (NEO Standard,

that provide a basis for verifying the | Annex A) to be conformant.
structure and content of NEO
encodings. One conformance class
is defined.

Product uses NEO content (choose at least
one):

___Viaactive IRI-based Web links (using
the REST API component of the NSG M
Standards Registry).

__ From locally installed copies of the
officially published technical artifacts.

The product implements the NEO structural
elements including all ontology
dependencies, elements with identity, M
generalization hierarchy, disjoint-classes
axioms, and property declarations.

The product implements the documentation
properties for the NEO (including both neo-
ent and neo-enum) and the ontology M
components (Entity Classes and
Properties).

The product implements the NEO datatypes
and encodings for Primitive Datatypes,

MeasureDatatype, EnumeratedTypes, and M
ComplexDatatypes.
Product represents the ontology o

components in separate resource files.

Authorized access to the system(s) where
the product is installed is needed to test the
product. (0]

__ Explanation for how to acquire
authorized access is attached to this ICS.

83

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Annex C — NEOX Utility Ontology for NSG Enterprise Ontology

(Normative)

C.1 Introduction

This annex contains the specification for the NSG Enterprise Ontology Auxiliary Ontology (NEOX), a utility ontology
for defining additional concepts needed for use with NEO content. The ontology is represented in OWL 2 (RDF/XML
encoding).

C.2 IRIs

IRIs for official content baselines of the NEOX ontology are versioned, because the content of the NEOX may change
with evolving requirements. The form of the versioned IRl is:

¢ IRl for NEOX (versioned): http://api.nsgreg.nga.mil/ontology/neox/1.0

For convenience (where supported), this non-versioned IRI retrieves the latest version:

¢ |RIfor NEOX (non-versioned): http://api.nsgreg.nga.mil/ontology/neox

IRIs for NEOX component concepts are formed by concatenating the ontology IRI with the slash (“/”) delimiter,
followed by the concept designation specified in the next section.

The namespace abbreviation for NEOX is 'neox'.

C.3 Concepts

The specification of NEOX adheres to the information modeling concepts and encodings defined in the NEO
Standard (Sections 5.2 and 5.4). Concept(s) defined in the NEOX ontology are presented in the table below, together
with their sources.

Table 24 — Concept(s) in the NEOX Ontology

Ref Concept OWL Construct Concept Definition Source

Designation

1 | valuesComplete | owl:DatatypeProperty | Definition: An indicator as to whether the Based on
set of listed values in an enumerated type ISO
is closed or not, with TRUE meaning 19103:2015,
‘closed’ (i.e., complete) and FALSE 6.5.1
meaning ‘open’ (i.e., not complete). Enumerations
Description: A set of listed values that is and codelists
not complete may be extensible following — General
specified guidelines. rules

C.4 Publication of NEOX

The NEOX utility ontology in RDF/XML (corresponding to the content of the ‘neox’ namespace) is available through
the REST API component of the NSG Standards Registry. This ontology is versioned for official use. Use of the non-
versioned URL (where supported) retrieves the latest version.

URL for the NSG Enterprise Ontology Auxiliary Ontology (NEOX):
e URL for NEOX (versioned): http://api.nsgreg.nga.mil/ontology/neox/1.0

e URL for NEOX (non-versioned): http://api.nsgreg.nga.mil/ontology/neox

Individual terms may be retrieved through the REST API.

84

http://api.nsgreg.nga.mil/ontology/neox/1.0
http://api.nsgreg.nga.mil/ontology/neox
http://api.nsgreg.nga.mil/ontology/neox/1.0
http://api.nsgreg.nga.mil/ontology/neox

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Annex D — Inspecting NEO Content

(Informative)

D.1 Introduction

The NEO content is contained in two OWL ontologies and may be viewed and edited in ontology tools that load OWL encoded in the mandatory RDF/XML syntax
or the optional N-Triples format. Protégé is a widely used, free, open-source ontology editor that may be used for this purpose.>®

This Annex illustrates the use of the open-source ontology viewer and editor Protégé for visualization and inspection of NEO content.
D.2 NEO Content Inspection using the Protégé Ontology Tool

D.2.1 Protégé: An Open-Source Ontology Tool for Viewing W3C OWL ontologies

The Protégé ontology editor, developed by Stanford University, is a free, open-source ontology development tool that may be used to view the NEO content.
Protégé has a graphical user interface that displays the class hierarchy, with detail panes for examining specific concepts. Protégé also offers plug-ins for
visualization, although the size of the NEO makes visualization of the entire ontology difficult. Protégé is available for download online at
http://protege.stanford.edu/. Documentation about the use of the Protégé tool is available on the Protégé web site
(http://protege.stanford.edu/support.php#documentationSupport). The Protégé wiki (http://protegewiki.stanford.edu/wiki/Main_Page) supports active user and
developer communities.

NOTE: Protégé will attempt to find external resources imported by the ontology being opened. If those are not accessible from the system where Protégé is
installed, Protégé will prompt the user to resolve the issue. Two options are available: (1) Click “No” to have Protégé proceed to open the ontology file without
accessing the external resources; (2) locate and copy the external resources and provide them in files accessible to Protégé within the installation system (for
assistance, users should consult their system administrators).

D.2.2 Viewing NEO Content using Protégé and its Plug-ins

In order to view the NEO content in Protégé, load the main NEO ontology file: ‘neo-ent.rdf (which imports the NEO enumerations ontology). The following screen
captures show various ways of viewing information about the NEO as a whole, its component classes and properties, and their documentation, using the open-
source ontology tool, Protégé.5!

50 Protégé may be downloaded online from http://protege.stanford.edu/.
51 Figures in this Annex were generated with Protégé 5.1.0. Different versions of Protégé may produce different graphical displays of ontology content.

85

http://protege.stanford.edu/
http://protege.stanford.edu/support.php#documentationSupport
https://protegewiki.stanford.edu/wiki/Main_Page
http://protege.stanford.edu/

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Figure 15 shows the metadata information describing the NEO ontology, as presented on the Active Ontology tab of the Protégé GUI.

<4 neo (http://api.nsgreg.nga.mil logy/neo/8.0) : [C:\U: dinichols\Documents\My Projects\NGA\NEO Suite\NEO Technical Artifacts\NEO-Test! ith import-1_for-Protege.rdf] - o X

File Edit View Reasoner Tools Refactor Window Help
< @ neo (h 'am.nsgregmgamn\/'o:vto!ogy/r\ec/&.\]: ~|| Search... | &

Individuals by class x | OWLViz x | DL Query x | OntoGraf x|

Active Ontology x | Entities x Classes x Object Properties x Data Properties x Annotation Properties x

[o 11 LT A LM ttp://api.nsgreg.nga.mil/ontology/neo/8.0| Metrics =
Ontology Version IRl Axiom 197460
Logical axiom count 48471
Annotations = Declaration axioms count 20742
:label [language: en] Class count 5337
NSG Enterprise Ontology Object property count 12295
skos:prefLabel [language: en] Dat-avpropeny connt 3102
NSG Enterprise Ontology Indiyidaslcoant i)
DL expressivity ALCOIN(D)
skos:definition [language: en]
<![CDATA[Definition: The NSG Enterprise Ontology (NEO) Standard defines a logic-based specification in the W3C Web Ontology Language Class axioms
(OWL 2) of the domain model for Geospatial Intelligence (GEQINT) information shared in the U.S. National System for Geospatial Intelligence SubClassOf 14382
(NSG). Description: The NSG Enterprise Ontology contains a computer-interpretable representation of entity classes, relationships, datatypes, s
and constraints based on (and derived from) the NSG Enterprise Data model (i.e., NSG Application Schema (NAS)), which is implemented in two EquivalentClasses 899
types of OWL 2 encodings: RDF/XML and N-Triples.]]> DisjointClasses 107
rdfs:isDefinedBy
http://nsareg.nga.mil/doc/view?i=2615 Hidden GCI Count 899
dcterms:source [language: en] Object property axioms
NSG Enterprise Ontology (NEO) Standard (draft)
owl: versionInfo

‘ Ontology imports ‘ Ontology Prefixes General class axioms ‘
Imported ontologies: DEEE
<http://def.isotc211.0rg/iso19115/-1/2014/CitationAndResponsiblePartyInformation> Af

<http://def.isotc211.0rg/iso19115/-1/2014/Constraintinformation>
<http://def.isotc211.0rg/is019108/2006/TemporalObjects>
<https://www.dni.gov/files/documents/CIO/ICEA/Juliet/RevR ecall-Public>
<http://defiisotc211.0rg/iso19115/-1/2014/DistributionInformation>
<http://def.isotc211.0rg/iso19115/-1/2014/Metadatalnformation>
<https://www.dni.gov/files/documents/CIO/ICEA/India/NTK-\/10-Public>
<http://def.isotc211.0rg/iso19115/-1/2014/IdentificationInformation>
<http://api.nsgreg.nga.mil/ontology/neox/1.0>

v

To use the ressoner click Reasoner > Start reasoner v/ Show Inferences

Figure 15 — NEO Described on the Active Ontology Tab of the Protégé Tool

86

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Figure 16 shows the NEO class hierarchy as presented in the Protégé GUI (left pane), with a detailed display (upper right pane) of the documentary information for
the highlighted class FeatureEntity, including: the preferred name of the concept, its definition, and a link to the source (i.e., the NAS entry) in which the

concept is defined.5?

<4 neo (http://api.nsgreg.nga.mil neo/8.0) : [C:AU dinichols\Doc My Projects\NGA\NEO Suite\NEO Technical Artifacts\NEO-Test ith port-1_for-Protege.rdf] = X
File Edit View Reasoner Tools Refactor Window Help
< ‘ @ neo (http://api.nsgreg.nga.mil/ontology/neo/8.0) 'i Search... | A

Active Ontology IEmities x | Classes x [Object Properties x IData Properties x [

Properties x | Individuals by class x | DL Query x | OntoGraf x | OWLViz x|

W I

|Class hierarchy | Class hi

3| | x|

- Gwic Ty

»- @ DataType

»- @ pomainMetadata
v-@ Enti

>

@ ActorEntity
»- @ ConsumableEntity
»- @ DeviceEntity
»- @ TemporalEntity
@ EntityCollection
»- @ EventCollection
»- @ PhysicalEntityCollection
»- @ Population
© InformationEntity
© owl:Class
> @ RecordMetadata
v- @ RecordSet
@ Dpataset
@ series
v- @ RelationshipEntity
@ ActivityLinguisticUse
»- @ ActorRelationship
© BeliefSystemDerivRelation
© BeliefSystemFamilyRelation
@ CconsumablePlaceInfo
@ ContributingCulturalFactor
@ DevicePlaceInfo
@ EconomicRolePerformance
@ EventParticipation
© FeaturePlaceInfo
@ HouseholdMembership
@ InstitutionalGroupMembership
@ KinshipRelationship
© LanguageGeographyRelation
@ MediaElectronicDistribution
@ MediaPhysicalDistribution
© organi xternalRole
© OrganisationInternalRole
@ personPlaceInfo
@ physEntCollPlaceInfo
© ResidencyRelationship
@ siteReligiousSignificance
@ SocialGroupLocation
@ SocialRole

<

Y

Class hierarchy: FeatureEntity mE®E Y Annotations: FeatureEntity DEEE

%Asserted)

-

Annotations | Usage

Annotations A
rdfs:label [language: en]
FeatureEntity
skos:prefLabel [language: en]

Feature Entity

skos:definition [language: en]

<![CDATA[Definition: An abstract modelling entity that is a superclass for feature types, which are representations of temporally persistent real-world
phenomena, including their geometric position and extent. Description: The concept of a 'feature' is that of the ISO 19100-series standards and as such is
not constrained to any specific representation; for example, surface representation such as grids and images are allowed in addition to vector
representations.]]>

rdfs:isDefinedBy
http://nsareg.nga.mil/as/view?i=100500

ranctraint Manaiiane: anl

iption: FeatureEntity

SubClass Of
@ Entity
@ FeatureEntity.locatedDeviceSurvey max 1 owl:Thing
@ FeatureEntity.physicalObjectMetadata max 1 owl:Thing
@ FeatureEntity.siteSignificance max 1 owl:Thing

General class axioms

SubClass Of (Anonymous Ancestor)
@ Entity.uniqueEntityIdentifier exactly 1 owl:Thing
@ Entity.legalConstraints max 1 owl:Thing
@ Entity.specifiedDomainValues max 1 owl:Thing
© Entity.objectIdentificationQuality max 1 owl:Thing

Instances

Target for Key

Disjoint With
© DeviceEntity, ActorEntity, TemporalEntity, ConsumableEntity

v

To use the reasoner click Reasoner > Start reasoner | | Show Inferences

52 The Protégé View menu (option to “Render by annotation property”) may be used to set the display to the desired display string for names of classes, properties, and individuals. In
Figure 16, the class names are displayed using the rdfs:label.

87

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Figure 16 — Protégé NEO Hierarchy View with Definition of the Class FeatureEntity

Figure 17 shows a graphical representation of the NEO class ActorEntity, using the Protégé plug-in OntoGraf (available from the Protégé Windows > Tabs
menu). The graph focus is on ActorEntity. Its subclasses (listed in the class hierarchy in the left panel) are displayed in the OntoGraf tab, together with their
relationships (as arcs) to other classes. The diagram may be manipulated. Arcs may be selected or hidden using the Arc Types panel. Arcs in the diagram may be
selected for more information. Documentation for classes may be displayed by rolling over the nodes in the graph. It is worth noting that the conventions of the
OntoGraf diagram differ from those of UML (e.g., arrows representing the generalization relationship point towards the subclass, rather than the superclass).

88

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

<4 neo (http://api.nsgreg.nga.mil /8.0) : [C:\Users\dInichols\D My Projects\NGA\NEO Suite\NEO Technical Artifacts\NEO-Test' ith. import-1_for-Protege.rdf] = X

File Edit View Reasoner Tools Refactor Window Help

‘Z‘ ‘@ neo (http://api.nsgreg.nga.mil/ontology/neo/8.0) v“ Search... ‘A
Active Ontology x | Entities x | Classes x | Object Properties x | Data Properties x | Annotation Properties x | Individuals by dass x DL Query x| OntoGraf x | OWLViz x|
Oniocer
| l |
@ | @‘ Asserted ~| _MorEntity lcontains 'fl Search \I [SICI 1 result(s) found.
v--® owl: Thi I = Teol Bl il <zl (o Tl | BEEESS = ?w,\‘ T
> © patatype o] & & ala]alq] [/]e]a [Be [/ 6] @]s] [al]

»- @ DomainMetadata

=l - w®
»- O FeatureEnti

 »-© Organisation
@ ownershipGroup
@ person
»- @ SocialGroup
»- @ ConsumableEntity
»- @ DeviceEntity
»- @ TemporalEntity
»-@ EntityCollection
»- @ InformationEntity
- owl:Class
» @ RecordMetadata
»- @ RecordSet
»- @ RelationshipEntity
»-- @ skos:Concept
@ skos:ConceptScheme

type filter text

W [Jdass ‘

Arc Types =

tvpe filter text

| ¥/ == ActorEntity.competitorOf (Domain>Range) =

[v| == ActorEntity.definesEconomicRole (Domain>Range)

| Iv| == ActorEntity.externalRoleProvider (Domain>Range)

Iv| == ActorEntity.hasAlly (Domain>Range)

Iv| == ActorEntity.hasCompetitor (Domain>Range)

Iv| == ActorEntity.hasSubgroup (Domain>Range) T

Iv| == ActorEntity.hasSubordinate (Domain>Range)

[v| == ActorEntity.hasSupergroup (Domain>Range)

| [== ActorEntity.hasSuperior (Domain>Range)

[v| == ActorEntity.healthcareResourceRoleServe (Domain>R:

Ky

ActorEntity.influencedBy (Domain>Range)

<

= ActorEntity.internalRoleProvider (Domain>Range)

v == ActorEntity.landAdminParty (Domain>Range)

v| == ActorEntity.mediaContentCoverage (Domain>Range)

vl ActorEntity.mediaElectronicDistribinfo (Domain>Rang

[v| == ActorEntity.mediaPhysicalDistribinfo (Domain>Range! v

I Bl |l] D

To use the reasoner click Reasoner > Start reasoner || Show Inferences

Figure 17 — OntoGraf Plug-in View of NEO ActorEntity Hierarchy with Relationships

Figure 18 shows the NEO class hierarchy (left panel) with the class Building selected. The top right panel displays the human-readable names and definition
provided in the class annotation properties. The lower middle panel shows the superclasses (SubclassOf) of Building that represent cardinality restrictions for

its properties. The lower right panel shows inherited restrictions, as well as the disjoint-classes assertions which ensure that individuals are categorized in only one
entity class at this level of the hierarchy.

89

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

<4 neo (http://api.nsgreg.nga.mi gy, .0) : [C:\Users\dInichols\Documents\My Projects\NGA\NEO Suite\NEO Technical Artifacts\NEO-Test ith port-1_for-Protege.rdf] T X
File Edit View Reasoner Tools Refactor Window Help
j ‘@ neo (http://api.nsgreg.nga.mil/ontology/neo/8.0) 'H Search... | &

Properties x [

Active Ontology | Entities x | Classes x | Object Properties x | Data Properties |

viduals by class x | DL Query x | OntoGraf x | OWLViz |

| Class hierarchy | Class hierarchy (i |

‘i’”Ew g !Asserted 'j
@ BoomingGround)
@ Borehole

© BotanicGarden

© BottomCharacterRegion
@ BoundaryMonument

© Bridge

© BridgePier

© BridgeSpan

© BridgeSuperstructure

© BridgeTower

Brush

ircraftHangar

@ AstronomicalObservatory
@ Barn

@ castle

© ControlTower

© FerryStation

@ FortifiedBuilding

@ Greenhouse

© HardenedAircraftShelter
@ Hut

@ ManorHouse

@ MaritimeSignalStation
© MotorVehicleStation
@ parkingGarage

© Roundhouse

© Shed

© stable

@ TransportationStation
© waterMill

@ BuildingOverhang

© BuildingSuperstructure
@ BuiltUpArea

@ Buoy

© Buriedutility

@ cable

@ cableway

@ cairn

@ callingInPoint

@ camp
@ campsite
© cane
- .

Annotations | Usage

Annotations: Building (u=Iof

Annotations
rdfs:label
Building

[language: en]

skos:prefLabel
Building

[language: en]

skos:definition [language: en]

<![CDATA[Definition: A free-standing self-supporting construction that is roofed, usually walled, and is intended for human occupancy (for example: a place of

work or recreation) and/or habitation. Description: For example, a dormitory, a

rdfs:isDefinedBy
http://nsareg.nga.mil/as/view?i=100083

Description: Building MEEEY Description: Building mEE=E

SubClass Of
@ Building.address max 1 owl:Thing
@ Building.adminDivision max 1 owl:Thing
@ Building.aeroObstacleLightPresent max 1 owl:Thing
@ Building.angleOfOri ion max 1 owl:Thing
@ Building.area max 1 owl:Thing
© Building.atAerodrome max 1 owl:Thing
@ Building.attachedBuilding max 1 owl:Thing
© Building.baseElevation max 1 owl:Thing
@ Building.billetingInfo max 1 owl:Thing
@ Building.conspicuousAirCategory max 1 owl:Thing
@ Buildii oundC: y max 1 owl:Thing
@ Building.controllingAuthority max 1 owl:Thing
@ Building.crossSectionalShape max 1 owl:Thing
@ Building.diamFunctionClass max 1 owl:Thing
@ Building.directivity max 1 owl:Thing
@ Building.facility max 1 owl:Thing
@ Building.facilityOperationalStatus max 1 owl:Thing
@ Building.featureFunction max 1 owl:Thing
@ Building.floodlit max 1 owl:Thing
@ Building.floorCount max 1 owl:Thing

ONSpic

bank, and a restaurant.]]>

v

SubClass Of (Anonymous Ancestor)
© FeatureEntity.locatedDeviceSurvey max 1 owl:Thing
© FeatureEntity.physicalObjectMetadata max 1 owl:Thing
© FeatureEntity.siteSignificance max 1 owl:Thing
© Entity.uniqueEntityIdentifier exactly 1 owl:Thing
@ Entity.legalConstraints max 1 owl:Thing
@ Entity.specifiedDomainValues max 1 owl:Thing
© Entity.objectIdentificationQuality max 1 owl:Thing

Instances
Target for Key

Disjoint With

@ MeasuredDistanceline, Cut, Curb, QanatShaft,
UndergroundBunker, Mountain, RadarRange,
ForestClearing, ExtractionMine, SubmarineSpring,
Reef, Crevasse, FishingVesselActivityRegion, Bench,
Hill, CampSite, MaritimeCautionArea, StatuePedestal,

RecyclingSite, Aerodr Y, Depr Dock,

Settlement, MooringChain, BeachProfile,

VehicleBarrier, BridgeSp Floating! rier,

Mooril i Water! ea, At L=l
To use the ressoner click Reasoner > Start ressoner | | Show Inferences.

Figure 18 — Protégé Class View of NEO Building including its Subclasses, Annotations, and Property Cardinalities

90

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

In Figure 17, below, the left panel displays a section of the NEO Object Property hierarchy, showing the object properties of Building with the property
Building.featureFunction selected. The upper right panel shows the annotations for the selected property, while the lower panels show the logical
characteristics of the property, including its domain and range.

< © neo (http://api.nsgreg.nga.mil/ontology/neo/8.0 ~|| Search... | &

Active Ontology x 1 Entities x } Classes x | Object Properties x Data Properties x ‘Annolatiion Properties x ilndivjduals by class x ‘DL Query x ‘ OntoGraf x iOWLViz x

Object property hierarchy: Building.featureFunction L=lolE) | Apnotations | Usage |
Ly [ﬁ VT 3s - IRl Annotations: Building.featureFunction DEE=E
™= BrushTerrainSurfaceMatCodeMeta.values 4| Annotations =

™ Building.address

== Building.adminDivision

== Building.adminForSpecialAdminDiv
™ Building.aeroObstacleLightPresent
™= Building.angleOfOrientation

rdfs:label [language: en]

featureFunction

skos:prefLabel [language: en]

= Building.area Building : Feature Function

P et

-?u!ld!ng.:::l;odron!e_ g skos:definition [language: en]

™= Building.baseElevation <![CDATA[Definition: The purpose(s) of, or intended role(s) served by, the feature. Description: [None Specified]]]>
™= Building.billetingInfo

== Building.buildingMarketInfo rdfs:isDefinedBy

™ Building.buildi bspace http://nsagreg.nga.mil/as/view?i=101855

™= Building.conspicuousAirCategory

™= Building.conspicuousGroundCategory
== Building.controllingAuthority

™= Building.crossSectionalShape

™= Building.diamFunctionClass

== Building.directivity

s Building.educationalUsageAssess

™ Building.entranceExit

™= Building.facility

™= Building.facili

OperationalStatus 57

== Building.floodit
™ Building.floorCount Functional Equivalent To
™= Building.governmentBuildingOfCountry
== Building.governmentBuildingOfFirstOrderAdminSubdivision Inverse functional . i
i Building.hazardShelterIntendedUse . SubProperty Of
= Building.heightAboveSurfacel evel Transitive
"= Building.helipadPresent Symmetric Inverse Of
™= Building.highestElevation
== Building.historicSignificance Asymmetric
=1 Building.installation Domains (intersection)
= Building.length Reflexive @ Building
== Building.locationRefToShoreline)
= Building facturedBuilding Irreflexive - oy
® Building.manufacturingInfo R s Aniprsecion
= Buildi itil v d kInfo @ BuildingFeatureFunctionCodeMeta
== Building.monitored
"= Building.multiUnit| g9 Disjoint With
™= Building.navigationLandmark
"= Building.permanent) i
™ Building.physicalCondition . 152 SuperProperty of (Chaln)

Figure 19 — Protégé View of Object Properties for Building (with Building . featureFunction Selected)

The range of the property Building. featureFunction is the class BuildingFeatureFunctionCodeMeta, which represents one of the NAS
datatypes with metadata that are transformed into a complex datatype in NEO. NEO complex datatypes are represented by OWL classes (viewable in the Class
Hierarchy, rather than in the Protégé Datatypes tab).

91

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

The Protégé Datatypes tab will not display all modeling elements that represent NEO datatypes. The Protégé display is based on the OWL Formal Specification,
which defines datatypes based only on rdf:PlainLiteral, rdf:XMLLiteral, and a subset of XML Schema datatypes. As discussed in Section 5.4.4.5, NEO complex
datatypes are represented in the ontology using OWL classes.*

Figure 20 shows the Protégé class view of the NEO complex datatype class BuildingFeatureFunctionCodeMeta. This complex datatype is composed
of:

e BuildingFeatureFunctionCodeMeta.values — a property to record the principal data value(s) (that is, one or more functions of the building);
e BuildingFeatureFunctionCodeMeta.reason — a property to record a reason to explain if (optionally) there is no data value; and

e Four inherited properties that may be used to record metadata about the data value (for example, the time period during which the data value is or was
applicable). The metadata properties are inherited from the abstract class DatatypeMeta.

One or the other of these two properties will be evaluated for a data instance, either the property whose data value(s) indicate the function(s) of an individual
Building, or the property that records the reason why there is no value.

53 The representation of complex datatypes is a known problem for representing the conceptual content of a UML model using OWL 2. See J. Zedlitz and N. Luttenberger, “Data Types
in UML and OWL-2", in SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing (2013); and J. Zedlitz and N. Luttenberger, “Transforming
Between UML Conceptual Models and OWL 2 Ontologies,” in Proceedings of the Terra Cognita Workshop on Foundations, Technologies and Applications of the Geospatial Web, in
conjunction with the 11™ International Semantic Web Conference (ISWC 2012), D. Kolas, M. Perry, R. Griitter, and M. Koubarakis, Eds., 2012, pp. p. 15-26. [Online]. Available:
http://ceur-ws.org/Vol-901/paper2.pdf

92

<4 neo (http://api.nsgreg.nga.mil logy/neo/8.0) : [C:AU

dinichols\Doc:

File Edit View Reasoner Tools Refactor Window Help

My Projects\NGA\NEO Suite\NEO Technical Artifacts\NEO-Test\ ith import-1_f

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

< j@ neo (http://api.nsgreg.nga.mil/ontology/neo/8.0)

iAcﬁve Ontology x | Entities x | Classes x | Object Properties x Data Properties x | Annotation Properties x[

als by class x DL Query x | OntoGraf x | OWLViz x

‘ Class hierarchy 1 Class hierarchy (inferred) |

Annotations | Usage

Class hierarchy: Building
BRI

Annotations: BuildingFeatureFunctionCodeMeta

EAsserted ¥| | Annotations

© BuildingConspicuousGroundCategoryCodeMet ~
@ BuildingControllingAuthorityCodeMeta

@ BuildingCrossSectionalShapeCodeMeta

@ BuildingDirectivityCodeMeta

@ BuildingFacilityOperationalStatusCodeMeta
gFeatureFunctionCodeMeta
@ BuildingHazardShelterIntendedUseCodeMeta
@ BuildingHistoricSignificanceCodeMeta

© BuildingLocationRefToShorelineCodeMeta

@ BuildingOverhangConspicuousAirCategoryCod
@ BuildingOverhangC picuousGroundCateg
@ BuildingOverhangPhysicalConditionCodeMeta
© BuildingOverhangStructMatCodeMeta

@ BuildingPhysicalConditionCod

@ BuildingRadarsignificanceCodeMeta

@ Buildi

g iveLevelCod a
© BuildingRoofShapeCod a
@ BuildingSpecifiedCc eTypeCod a
@ BuildingStructureShapeCodeMeta
@ Buildi perstructur ildi perstructTyf

© BuildingSuperstructureConspicuousAirCategol
@ BuildingSuperstructureConspicuousGroundCal
@ BuildingSuperstructureCrossSectionalShapeCc
© BuildingSuperstructureDirectivityCodeMeta

© BuildingSuperstructureFacilityOperationalStat
@ Buildi ysicalConditionCode|

gSuperstructur

@ BuildingSuperstructur darSignificanceCode
@ BuildingSuperstructureStructMatCodeMeta

9 ingUnitBuildingUnitOwnershipCodeMeta
@ BuildingVerticalConstMatCodeMeta

© BuiltUpAr gnAdminLevelCod a

@ BuiltUpAreaBuiltUpAreaDensityCatCodeMeta

© BuiltUpAreaConspicuousAirCategoryCod

@ BuiltUpAreaConspicuousGroundCategoryCode
@ BuiltuUpAreaControllingAuthorityCodeMeta

@ BuiltUpAreaDirectivityCodeMeta

© BuiltUpAreaFacilityOper: IStatusCod:

@ BuiltUpAreaFeatureFunctionCodeMeta

@ BuiltUpAreaPhysicalConditionCodeMeta

@ BuiltUpAr 1 tPatternCod

© BuiltUpAreaStructMatCodeMeta

© BuiltupAreaWorldPortIndexIdentifierTextMetz _
- o)

A

] >

rdfs:label [language: en]

BuildingFeatureFunctionCodeMeta
skos:prefLabel
Building Feature Function Code(s) or Reason; with Metadata

[language: en]

skos:definition [language: en]

<![CDATA[Definition: A sequence of coded domain values denoting the feature function type(s) of a building, accompanied by the reason that the value may
be absent and associated metadata. Description: [None Specified]]]>

rdfs:isDefinedBy
http://nsareg.nga.mil/as/view?i=122642

Description: BuildingFeatureFunctionCodeMeta

SubClass Of

@ ((BuildingFeatureFunctionCodeMeta.values min 1
owl:Thing) and

ingFeatureFunctionCodeMeta.reason exactly 0

owl:Thing)) or

((BuildingFeatureFunctionCodeMeta.reason exactly 1

owl:Thing) and

@ DatatypeMeta

General class axioms

SubClass Of (Anonymous Anc

© DatatypeMeta.propertyValApplicableTime max 1
owl:Thing

© DatatypeMeta.legalConstraints max 1 owl:Thing
@ DatatypeMeta.resourceConstraints max 1 owl:Thing
© DatatypeMeta.metadata max 1 owl:Thing

Instances

Target for Key

Nisinint Alith

Description: Building

SubClass Of (Anonymous Ancestor)
© FeatureEntity.locatedDeviceSurvey max 1 owl:Thing
@ FeatureEntity.physicalObjectMetadata max 1 owl:Thing
@ FeatureEntity.siteSignificance max 1 owl:Thing
© Entity.uniqueEntityIdentifier exactly 1 owl:Thing
@ Entity.legalConstraints max 1 owl:Thing
@ Entity.specifiedDomainValues max 1 owl:Thing
@ Entity.objectIdentificationQuality max 1 owl:Thing

Instances
Target for Key

Disjoint With

© MeasuredDistancelLine, Cut, Curb, QanatShaft,
UndergroundBunker, Mountain, RadarRange,
ForestClearing, ExtractionMine, SubmarineSpring,
Reef, Crevasse, FishingVesselActivityRegion, Bench,
Hill, CampsSite, MaritimeCautionArea, StatuePedestal,
RecyclingSite, AerodromeBoundary, Depression, Dock,
Settlement, MooringChain, BeachProfile,
VehicleBarrier, BridgeSpan, FloatingBarrier,
MooringRina, WaterbodvArea, AtsRouteSeament,

To use the reasoner click Reasoner > Start ressoner |

Figure 20 — NEO Complex Datatype BuildingFeatureFunctionCodeMeta

93

0

[«T

mEEE

D]

-

| Show Inferences

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Figure 21, below, displays the Protégé view of the property BuildingFeatureFunctionCodeMeta.values. The property range is the class
BuildingFeatureFunction, which represents a codelist in the Information Resources Registry of the NSG Standards Registry. The encodings of the

codelist and its values (in OWL and SKOS) are available from the REST API component of the NSG Standards Registry. They may also be viewed using a web
browser in the IR Registry (for example: http://nsgreg.nga.mil/ir/view?i=100183).

File Edit View Reasoner Tools Refactor Window Help

< @ neo |

v|| Search...
= e T = = T = = 5 S = T
Active Ontology x | Entities x | Classes x | Object Properties x Data Properties % Annotation Properties x | Individuals by class x | OWLViz x | DL Query x|
\Classes | Object properties | Data properties | | ion properties | D. P ‘ == BuildingFeatureFunctionCodeMeta.values — tureFunctionCodel
Object property hierarchy: Bu\!d|ngFeatureFunmonCodeMma values [LECE] | Annotations j Object Property Usage \
e bl ﬁ 315 Il Usage: BuildingFeatureFunctionCodeMeta.values [slol)
™= BuildingFeatureFunctionCodeMeta.reason ~ Show: ¥ thisl | disjoints

gFeatureFunctionCodeMeta.values

Found 12 uses of BuildingFeatureFunctionCodeMeta.values

= Buildi iterIntended d a.reason v @ BuildingFeatureFunctionCod
: s ' EAE values @ BuildingFeatureFunctionCodeMeta SubClassOf ((BuildingFeatureFunctionCodeMeta.values min 1 owl:Thing) and (BuildingFeatureFunctionCodeMeta.reason ex
- Ruild
= BuildingLocationRe oShoreIineCod:;l‘ll:tl:j'eason M L catirekunctiontod valties
== BuildingLocationRefToShorelineCodeMeta.value ™= BuildingFeatureFunctionCodeMeta.values Domain BuildingFeatureFunctionCodeMeta
= BuildingOverhang.area == BuildingFeatureFunctionCodeMeta.values rdfs:label "values"@en
== BuildingOverhang.conspicuousAirCategory [#] ¥ == BuildingFeatureFunctionCodeMeta.values skos:prefLabel "Sequence of Building Feature Function Codelist Values"@en
-Bulldm90verhang cnnsplcuousGruundCategory == BuildingFeatureFunctionCodeMeta.values rdfs:isDefinedBy view?i=187928
ildingover g g faceLevel ™= BuildingFeatureFunctionCodeMeta.values Range BuildingFeatureFunction
== BuildingOver! high i - BuildingFeatureFunctionCodeMeta.values
-Bulldmgoverhang Ienglh == BuildingFeatureFunctionCodeMeta.values skos:definition "<![CDATA[Definition: A sequence of building feature function code values from a specified codelist.
- ver d kInfo
-Bu|Idmgoverhang.overheadclearance
= Buildil ver! il 7 | >
e il 2
= BuildingOver ildi Functional Equivalent To
™= BuildingOverhang.width
== BuildingOverhangConspicuousAirCategoryCodeMeta.reason Inverse functional .
== BuildingOverhangConspicuousAirCategoryCodeMeta.value i SubProperty Of
= guildingOverhangConspicuousGroundCategoryCodeMeta.reason Transitive
-Bu|Id|ngOverhangConsplcuousGroundCategoryCodeMeta value Symmetric
== Buildil verhangPhysicalCondi reason
- Ruildi ver icalC iti value Asymmetric
-BuildingOverhangstructMatCodeMeta reason Domains.{ing Y
-Bulldmg0verhangstructMa(CodeMeta values Reflexive @ BuildingFeatureFunctionCod
alC di reason X
-Bu|Id|ngPhystcalCondmonCodeMeta value Izeficave Réifigy
fi eain anges (inte)
-BulldngadarSIQ ficanceCodeMeta.value @ BuildingFeatureFunction
iveLevelCod reason
-Bu|Id|ngRelallveLevelcodeMeta.value Disjoint With
- reason
-BulldngoofShapeCodeMeta values
ifiedCi i eTypeCod reason SuperProperty Of (Chain)
== Buildi ifiedC pli -—TvpeCodeMe‘a value
== Buildi ructur reason

-Bu|Id|ngStructureshapecodeMeta value
- Bulldmgsuperstructure aeroobslaclenghlPresenl

perstructure.aggreg,

== Buildil structure.angleOfOri
-Bulldmgsuperstructure area

- perstructure.buildi perstructType
== Buildi structure.c eatureCount

== Buildi perstructure.con irCategory
-Bulldmgsuperstructure conspicuousGroundCategory
structure.crossSecti

= Buil | i structure.directivity ¥
] 7 5

To use the reasoner click Ressoner > Start reasoner [v] Show Inferences

Figure 21 — Protégé View of NEO Object Property BuildingFeatureFunctionCodeMeta . values

94

http://nsgreg.nga.mil/ir/view?i=100183

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

The range of the property BuildingFeatureFunction.reason is the NEO enumeration VoidValueReason, whose definition and values are shown
below in Figure 22. NEO enumerations are encoded as subclasses of SKOS Concept, with the listed values represented by individual SKOS Concepts. The listed
values are shown in the lower right panel, below, as instances of the enumeration class VoidvalueReason.

File Edit View Reasoner Tools Refactor Window Help

‘i ‘@ neo (http://api.nsgreg.nga.mil/ontology/neo/8.0) 'i‘ Search... ‘
Active Ontology x | Entities x | Classes x | Object Pr er Query x| OntoGrat x|
Classes | Object properties] Data properties I A tion properties l Datatypes I i J © VoidValueReason — http://api.nsgreg.nga.mil/ontology/neo-enum/8.0#VoidValueReason
Class hierarchy: VoidValueReason MEEE ‘Class Annotations | Class Usage
t: i:.‘ | &‘ JE TG I qll Annotations: VoidValueReason mEExE
& VehicleBarrierLocationRefToShorelineType 'a| | Annotations A
© VehicleBarrierPhysicalConditionType B o o |
© VehicleLotFacilityOperationalStatusType rdfs:label [language: en]
© VehicleLotPhysicalConditionType \JoidValueReason ‘
© VesselLiftConspicuousAirCategoryType
© VesselLiftConspicuousGroundCategoryType skos:prefLabel [language: en]
© VesselLiftDirectivity Type \Joid VValue Reason ‘
© VesselLiftFacilityOperationalStatusType
-© VesselLiftPhysicalConditionType skos:definition [language: en]
O VesselliftRelativeLevelType) <![CDATA[Definition: The condition due to which the attribute value may be missing or otherwise not fulfil the specification of the attribute value domain.
© visualAppSlopelndSystemFacilityOperationalStatusType Description: For example, it may be the case that the attribute value is unknown or that it is known but due to policy considerations it cannot be given.]]>
© VisualAppSlopelndSystemLightSystemIntensity Type
© VisualAppSlopelndSystemLightSystemIntVariableType rdfs:isDefinedBy o |
O VisualAppSlopelndSystemVasisType http://nsarea.nga.mil/as/view?i=100940 \
-© voidNumValueReason
® VoidValueReason ‘
© VolcanicDykeLocationRefToShorelineType 1
© VolcanoVolcanicActivityType =

- VolcanoVolcanoShapeType

Description: VoidValueReason DEEE
© wallConspicuousAirCategoryType

© wallConspicuousGroundCategoryType Equivalent To

© wallDirectivityType @ {VoidvalueReason/noInformation , VoidValueReason/notApplicable , VoidVal »n/other , Voidval n/valueSpecified}
© wallLocationRefToShorelineType

© wallPhysicalConditionType .

-© waterAerodromeAirfieldSymbolType SubClass Of

-© waterfallDirectivity Type © skos:Concept

© WaterMovementDataLocationReferenceWaterLevelType
- e e e
© waterRaceConspicuousGroundCategoryType Ceneralcass axioms @)

- WaterRaceFacilityOperationalStatusType
© waterRacePhysicalConditionType SubClass Of (Anonymous Ancestor)
© waterRaceRelativeLevelType
© waterRaceVerticalRelativeLocationType

© waterRaceWaterRaceType nstances

© waterResourcelnfoHydrologicPersistenceType @ voidvalueReason/nolnformation
© waterResourceInfoWaterType # voidvalueReason/notApplicable
-© waterTreatmentBedConspicuousAirCategoryType @ VoidvalueReason/other

© WaterTreatmentBedConspicuousGroundCategoryType

© WaterTreatmentBedFacilityOperationalStatusType @ voidvalueReason/ valuespeitied

Figure 22 — Protégé Class View of the NEO Enumeration VoidValueReason

In addition to the various panel views and graphical displays shown above, the Protégé tool also has a search function and supports querying the ontology.

95

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

Annex E — UML Primer

(Informative)

E.1 UML Notations

The diagrams that appear in this document are presented using the Unified Modeling Language (UML) static
structure diagram with the 1SO Interface Definition Language basic type definitions and the UML Object Constraint
Language (OCL) as the conceptual schema language. The UML notations used in this Standard are described in
Figure 23.

Association

Aggregation S

Composition - @

Generalization I

Dependency | [______________ >

Figure 23 — UML Notation
E.2 UML Model Relationships

E.2.1 Associations

An association is used to describe a relationship between two or more classes. UML defines three different types of
relationships, called association, aggregation and composition. The three types have different semantics. An ordinary
association shall be used to represent a general relationship between two classes. An association may be
unidirectional, i.e., navigable in only one direction (indicated by an arrowhead in the direction of navigation).

The aggregation and composition associations shall be used to create part-whole relationships between two classes.

An aggregation association is a relationship between two classes in which one of the classes plays the role of
container and the other plays the role of a containee.

A composition association is a strong aggregation. In a composition association, if a container object is deleted, then
all of its containee objects are deleted as well. The composition association shall be used when the objects
representing the parts of a container object cannot exist without the container object.

E.2.2 Navigation

Associations may be navigable in only one direction. If the direction is not specified, it is assumed to be a two-way
association. If one-way associations are intended, the direction of the association can be marked by an arrow at the
end of the line. Navigability means that instances participating in links at runtime (instances of an association) can be
accessed efficiently from instances participating in links at the other end of the association. The precise mechanism
by which such access is achieved is implementation specific. If an end is not navigable, access from the other ends
may or may not be possible, and if it is, it might not be efficient.

96

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

E.2.3 Generalization

A generalization is a relationship between a superclass and the subclasses that may be substituted for it. The
superclass is the generalized class, while the subclasses are specified classes.

E.2.4 Instantiation / Dependency

A dependency relationship shows that the client class depends on the supplier class/interface to provide certain
services, such as:

e Client class accesses a value (constant or variable) defined in the supplier class/interface;
e Operations of the client class invoke operations of the supplier class/interface;

e Operations of the client class have signatures whose return class or arguments are instances of the supplier
class/interface.

An instantiated relationship represents the act of substituting actual values for the parameters of a parameterized
class or parameterized class utility to create a specialized version of the more general item.

E.2.5 Roles

If an association is navigable in a particular direction, the model shall supply a “role name” that is appropriate for the
role of the target object in relation to the source object. Thus, in a two-way association, two role names will be
supplied. Figure 24 represents how role names and cardinalities are expressed in UML diagrams.

Association between classes

Aszociation name

Class #1 . Class #2
role-1 roka-2

Association cardinality

1 1.
— Class Exactly one Class One or more
"o n
= Class Zero of more Class Specific number
0.1 Class Optional (zero or one)
Aggregation between classes Class Inheritance (subtyping of classes)
Aggregate Superclass
class
[[[1 [
Component Component Component .
class #1 class 42 class #n Subclass #1 Subclass #2 Subclass #n

Figure 24 — UML Roles

97

NSG Enterprise Ontology (NEO) Standard, Edition 1.0

E.3 UML Model Stereotypes

A UML stereotype is an extension mechanism for existing UML concepts. It is a model element that is used to classify
(or mark) other UML elements so that they in some respect behave as if they were instances of new virtual or pseudo
metamodel classes whose form is based on existing base metamodel classes. Stereotypes augment the
classification mechanisms on the basis of the built-in UML metamodel class hierarchy. Below are brief descriptions of
the stereotypes used in this document.

In the NSG Application Schema (NAS), the following UML stereotypes are used:

a.

<<type>> class used for specification of a domain of instances (objects), together with the operations
applicable to the objects. A type may have attributes and associations.

<<enumeration>> datatype whose instances form a list of named literal values. Both the enumeration name
and its literal values are declared. Enumeration means a short list of well-understood potential values within
a class.

<<dataType>> a descriptor of a set of values that lack identity and whose operations do not have side
effects. Datatypes include primitive pre-defined types and user-definable types. Pre-defined types include
numbers, string, and time. User-definable types include enumerations.

<<codeList>> used to describe a more open enumeration. <<codeList>> is a flexible enumeration. Code
lists are useful for expressing a long list of potential values. If the elements of the list are completely known,
an enumeration should be used; if the only likely values of the elements are known, a code list should be
used.

<<union>> describes a selection of one of the specified types. This is useful to specify a set of alternative
classesl/types that can be used, without the need to create a common super-type/class.

<<abstract>> class (or other classifier) that cannot be directly instantiated. The UML notation for this is to
show the name in italics.

98

